2,107 research outputs found

    Using deuterated H3+ and other molecular species to understand the formation of stars and planets

    Full text link
    The H3+ ion plays a key role in the chemistry of dense interstellar gas clouds where stars and planets are forming. The low temperatures and high extinctions of such clouds make direct observations of H3+ impossible, but lead to large abundances of H2D+ and D2H+ which are very useful probes of the early stages of star and planet formation. Maps of H2D+ and D2H+ pure rotational line emission toward star-forming regions show that the strong deuteration of H3+ is the result of near-complete molecular depletion of CNO-bearing molecules onto grain surfaces, which quickly disappears as cores warm up after stars have formed. In the warmer parts of interstellar gas clouds, H3+ transfers its proton to other neutrals such as CO and N2, leading to a rich ionic chemistry. The abundances of such species are useful tracers of physical conditions such as the radiation field and the electron fraction. Recent observations of HF line emission toward the Orion Bar imply a high electron fraction, and we suggest that observations of OH+ and H2O+ emission may be used to probe the electron density in the nuclei of external galaxies.Comment: Proceedings of the H3+ centennial symposium, to be published in RSPTA (editor: T. Oka

    Discovery of distant high luminosity infrared galaxies

    Get PDF
    We have developed a method for selecting the most luminous galaxies detected by IRAS based on their extreme values of R, the ratio of 60 micron and B-band luminosity. These objects have optical counterparts that are close to or below the limits of Schmidt surveys. We have tested our method on a 1079 deg^2 region of sky, where we have selected a sample of IRAS sources with 60 micron flux densities greater than 0.2 Jy, corresponding to a redshift limit z~1 for objects with far-IR luminosities of 10^{13} L_sun. Optical identifications for these were obtained from the UK Schmidt Telescope plates, using the likelihood ratio method. Optical spectroscopy has been carried out to reliably identify and measure the redshifts of six objects with very faint optical counterparts, which are the only objects with R>100 in the sample. One object is a hyperluminous infrared galaxy (HyLIG) at z=0.834. Of the remaining, fainter objects, five are ultraluminous infrared galaxies (ULIGs) with a mean redshift of 0.45, higher than the highest known redshift of any non-hyperluminous ULIG prior to this study. High excitation lines reveal the presence of an active nucleus in the HyLIG, just as in the other known infrared-selected HyLIGs. In contrast, no high excitation lines are found in the non-hyperluminous ULIGs. We discuss the implications of our results for the number density of HyLIGs at z<1 and for the evolution of the infrared galaxy population out to this redshift, and show that substantial evolution is indicated. Our selection method is robust against the presence of gravitational lensing if the optical and infrared magnification factors are similar, and we suggest a way of using it to select candidate gravitationally lensed infrared galaxies.Comment: 6 pages, accepted for publication in A&

    Probing the Interstellar Medium using HI absorption and emission towards the W3 HII region

    Full text link
    HI spectra towards the W3 HII complex are presented and used to probe the Galactic structure and interstellar medium conditions between us and this region. The overall shape of the spectra is consistent with the predictions of the Two-Arm Spiral Shock model wherein the gas found in the -40 km/s to -50 km/s range has been accelerated by some 20 km/s from its rotation curve velocity. Spin temperatures of ~100 K are derived for the Local Arm gas, lower than found in a previous, similar study towards DR 7. For the interarm region, values on the order of 300 K are found, implying a negligible filling factor for the Cold Neutral Medium (<< 1%). Some of the absorbing gas at velocities near -40 km/s is confirmed to be associated with the HII regions.Comment: 23 pages, 6 figures, accepted for publication in the Astronomical Journa

    Assessment of Iodine Contrast-To-Noise Ratio in Virtual Monoenergetic Images Reconstructed from Dual-Source Energy-Integrating CT and Photon-Counting CT Data

    Get PDF
    To evaluate whether the contrast-to-noise ratio (CNR) of an iodinated contrast agent in virtual monoenergetic images (VMI) from the first clinical photon-counting detector (PCD) CT scanner is superior to VMI CNR from a dual-source dual-energy CT scanner with energy-integrating detectors (EID), two anthropomorphic phantoms in three different sizes (thorax and abdomen, QRM GmbH), in combination with a custom-built insert containing cavities filled with water, and water with 15 mg iodine/mL, were scanned on an EID-based scanner (Siemens SOMATOM Force) and on a PCD-based scanner (Siemens, NAEOTOM Alpha). VMI (range 40–100 keV) were reconstructed without an iterative reconstruction (IR) technique and with an IR strength of 60% for the EID technique (ADMIRE) and closest matching IR strengths of 50% and 75% for the PCD technique (QIR). CNR was defined as the difference in mean CT numbers of water, and water with iodine, divided by the root mean square value of the measured noise in water, and water with iodine. A two-sample t-test was performed to evaluate differences in CNR between images. A p-value &lt; 0.05 was considered statistically significant. For VMI without IR and below 60 keV, the CNR of the PCD-based images at 120 and 90 kVp was up to 55% and 75% higher than the CNR of the EID-based images, respectively (p &lt; 0.05). For VMI above 60 keV, CNRs of PCD-based images at both 120 and 90 kVp were up to 20% lower than the CNRs of EID-based images. Similar or improved performance of PCD-based images in comparison with EID-based images were observed for VMIs reconstructed with IR techniques. In conclusion, with PCD-CT, iodine CNR on low energy VMI (&lt;60 keV) is better than with EID-CT.</p

    Fire-Related Carbon Emissions from Land Use Transitions in Southern Amazonia

    Get PDF
    Various land-use transitions in the tropics contribute to atmospheric carbon emissions, including forest conversion for small-scale farming, cattle ranching, and production of commodities such as soya and palm oil. These transitions involve fire as an effective and inexpensive means for clearing. We applied the DECAF (DEforestation CArbon Fluxes) model to Mato Grosso, Brazil to estimate fire emissions from various land-use transitions during 2001-2005. Fires associated with deforestation contributed 67 Tg C/yr (17 and 50 Tg C/yr from conversion to cropland and pasture, respectively), while conversion of savannas and existing cattle pasture to cropland contributed 17 Tg C/yr and pasture maintenance fires 6 Tg C/yr. Large clearings (>100 ha/yr) contributed 67% of emissions but comprised only 10% of deforestation events. From a policy perspective, results imply that intensification of agricultural production on already-cleared land and policies to discourage large clearings would reduce the major sources of emissions from fires in this region. Copyright 2008 by the American Geophysical Union

    Discovery of distant high luminosity infrared galaxies

    Get PDF
    We have developed a method for selecting the most luminous galaxies detected by IRAS based on their extreme values of R, the ratio of 60 micron and B-band luminosity. These objects have optical counterparts that are close to or below the limits of Schmidt surveys. We have tested our method on a 1079 deg^2 region of sky, where we have selected a sample of IRAS sources with 60 micron flux densities greater than 0.2 Jy, corresponding to a redshift limit z~1 for objects with far-IR luminosities of 10^{13} L_sun. Optical identifications for these were obtained from the UK Schmidt Telescope plates, using the likelihood ratio method. Optical spectroscopy has been carried out to reliably identify and measure the redshifts of six objects with very faint optical counterparts, which are the only objects with R>100 in the sample. One object is a hyperluminous infrared galaxy (HyLIG) at z=0.834. Of the remaining, fainter objects, five are ultraluminous infrared galaxies (ULIGs) with a mean redshift of 0.45, higher than the highest known redshift of any non-hyperluminous ULIG prior to this study. High excitation lines reveal the presence of an active nucleus in the HyLIG, just as in the other known infrared-selected HyLIGs. In contrast, no high excitation lines are found in the non-hyperluminous ULIGs. We discuss the implications of our results for the number density of HyLIGs at z<1 and for the evolution of the infrared galaxy population out to this redshift, and show that substantial evolution is indicated. Our selection method is robust against the presence of gravitational lensing if the optical and infrared magnification factors are similar, and we suggest a way of using it to select candidate gravitationally lensed infrared galaxies

    The alpha and helion particle charge radius difference from spectroscopy of quantum-degenerate helium

    Full text link
    Accurate spectroscopic measurements of calculable systems provide a powerful method for testing the Standard Model and extracting fundamental constants. Recently, spectroscopic measurements of finite nuclear size effects in normal and muonic hydrogen resulted in unexpectedly large adjustments of the proton charge radius and the Rydberg constant. We measured the 23S→21S2^3\mathrm{S}\rightarrow2^1\mathrm{S} transition frequency in a Fermi gas of 3^3He with an order of magnitude higher accuracy than before. Together with a previous measurement in a 4^4He Bose-Einstein condensate, a squared charge radius difference rh2−rα2=1.0757(15) fm2r^2_h - r^2_{\alpha} = 1.0757(15)\ \mathrm{fm^2} is determined between the helion and alpha particle. This measurement provides a benchmark with unprecedented accuracy for nuclear structure calculations. A deviation of 3.6σ\sigma is found with a determination (arXiv:2305.11679) based on spectroscopy of muonic helium ions.Comment: Paper and supplementary in total 13 pages and 5 figure

    Physical Conditions in Orion's Veil

    Get PDF
    Orion's veil consists of several layers of largely neutral gas lying between us and the main ionizing stars of the Orion nebula. It is visible in 21cm H I absorption and in optical and UV absorption lines of H I and other species. Toward the Trapezium, the veil has two remarkable properties, high magnetic field (~100 microGauss) and a surprising lack of molecular hydrogen given its total hydrogen column density. Here we compute photoionization models of the veil to establish its gas density and its distance from the Trapezium. We use a greatly improved model of the hydrogen molecule that determines level populations in ~1e5 rotational/vibrational levels and provides improved estimates of molecular hydrogen destruction via the Lyman-Werner bands. Our best fit photoionization models place the veil 1-3 pc in front of the star at a density of 1e3-1e4 cubic centimeters. Magnetic energy dominates the energy of non-thermal motions in at least one of the 21cm H I velocity components. Therefore, the veil is the first interstellar environment where magnetic dominance appears to exist. We find that the low ratio of molecular to atomic hydrogen (< 1e-4) is a consequence of high UV flux incident upon the veil due to its proximity to the Trapezium stars and the absence of small grains in the region.Comment: 45 pages, 20 figures, accepted for publication in Ap
    • 

    corecore