1,025 research outputs found

    Microwave spectroscopy on magnetization reversal dynamics of nanomagnets with electronic detection

    Get PDF
    We demonstrate a detection method for microwave spectroscopy on magnetization reversal dynamics of nanomagnets. Measurement of the nanomagnet anisotropic magnetoresistance was used for probing how magnetization reversal is resonantly enhanced by microwave magnetic fields. We used Co strips of 2 um x 130 nm x 40 nm, and microwave fields were applied via an on-chip coplanar wave guide. The method was applied for demonstrating single domain-wall resonance, and studying the role of resonant domain-wall dynamics in magnetization reversal

    Interference effects in isolated Josephson junction arrays with geometric symmetries

    Full text link
    As the size of a Josephson junction is reduced, charging effects become important and the superconducting phase across the link turns into a periodic quantum variable. Isolated Josephson junction arrays are described in terms of such periodic quantum variables and thus exhibit pronounced quantum interference effects arising from paths with different winding numbers (Aharonov-Casher effects). These interference effects have strong implications for the excitation spectrum of the array which are relevant in applications of superconducting junction arrays for quantum computing. The interference effects are most pronounced in arrays composed of identical junctions and possessing geometric symmetries; they may be controlled by either external gate potentials or by adding/removing charge to/from the array. Here we consider a loop of N identical junctions encircling one half superconducting quantum of magnetic flux. In this system, the ground state is found to be non-degenerate if the total number of Cooper pairs on the array is divisible by N, and doubly degenerate otherwise (after the stray charges are compensated by the gate voltages).Comment: 9 pages, 6 figure

    Suppressed spin dephasing for 2D and bulk electrons in GaAs wires due to engineered cancellation of spin-orbit interaction terms

    Get PDF
    We report a study of suppressed spin dephasing for quasi-one-dimensional electron ensembles in wires etched into a GaAs/AlGaAs heterojunction system. Time-resolved Kerr-rotation measurements show a suppression that is most pronounced for wires along the [110] crystal direction. This is the fingerprint of a suppression that is enhanced due to a strong anisotropy in spin-orbit fields that can occur when the Rashba and Dresselhaus contributions are engineered to cancel each other. A surprising observation is that this mechanisms for suppressing spin dephasing is not only effective for electrons in the heterojunction quantum well, but also for electrons in a deeper bulk layer.Comment: 5 pages, 3 figure

    Highly abundant HCN in the inner hot envelope of GL 2591: probing the birth of a hot core?

    Get PDF
    We present observations of the v2=0 and vibrationally excited v2=1 J=9-8 rotational lines of HCN at 797 GHz toward the deeply embedded massive young stellar object GL 2591, which provide the missing link between the extended envelope traced by lower-J line emission and the small region of hot (T_ex >= 300 K), abundant HCN seen in 14 micron absorption with the Infrared Space Observatory (ISO). The line ratio yields T_ex=720^+135_-100 K and the line profiles reveal that the hot gas seen with ISO is at the velocity of the protostar, arguing against a location in the outflow or in shocks. Radiative transfer calculations using a depth-dependent density and temperature structure show that the data rule out a constant abundance throughout the envelope, but that a model with a jump of the abundance in the inner part by two orders of magnitude matches the observations. Such a jump is consistent with the sharp increase in HCN abundance at temperatures >~230 K predicted by recent chemical models in which atomic oxygen is driven into water at these temperatures. Together with the evidence for ice evaporation in this source, this result suggests that we may be witnessing the birth of a hot core. Thus, GL 2591 may represent a rare class of objects at an evolutionary stage just preceding the `hot core' stage of massive star formation.Comment: Accepted by ApJ Letters, 11 pages including 3 figures, uses AASTe

    Unbearability of suffering at the end of life: the development of a new measuring device, the SOS-V

    Get PDF
    AbstractBackgroundUnbearable suffering is an important issue in end-of-life decisions. However, there has been no systematic, prospective, patient-oriented research which has focused on unbearable suffering, nor is there a suitable measurement instrument. This article describes the methodological development of a quantitative instrument to measure the nature and intensity of unbearable suffering, practical aspects of its use in end-stage cancer patients in general practice, and studies content validity and psychometric properties.MethodsRecognizing the conceptual difference between unbearability of suffering and extent or intensity of suffering, we developed an instrument. The compilation of aspects considered to be of importance was based on a literature search. Psychometric properties were determined on results of the first interviews with 64 end-stage cancer patients that participated in a longitudinal study in the Netherlands.ResultsThe instrument measures five domains: medical signs and symptoms, loss of function, personal aspects, aspects of environment, and nature and prognosis of the disease. Sixty nine aspects were investigated, and an overall score was asked. In 64 end-stage cancer patients the instrument was used in total 153 times with an average interview time varying from 20-40 minutes. Cronbachs alpha's of the subscales were in majority above 0.7. The sum scores of (sub)scales were correlated strongly to overall measures on suffering.ConclusionThe SOS-V is an instrument for measuring the unbearability of suffering in end-stage cancer patients with good content validity and psychometric properties, which is feasible to be used in practice. This structured instrument makes it possible to identify and study unbearable suffering in a quantitative and patient-oriented way

    Exploring the adoption of precision agricultural technologies: a cross regional study of EU farmers

    Get PDF
    Precision agricultural technologies (PATs) allow more detailed management of in-field variability. Policy and advisory communities have championed PATs as a route to preserving natural capital whilst increasing productivity from agricultural land. A range of PATs are currently available for the agricultural producer but uptake varies by the type of technology and region. Whereas most studies on uptake have focused on US or Australia we empirically examine uptake of machine guidance (MG) and variable rate nitrogen technologies (VRNT) within European farming systems. Using primary information from 971 arable crop growers across five countries: Belgium, Germany, Greece, the Netherlands and the UK, a multilevel random intercept regression estimated a) the differences between adoption and non-adoption and b) the differences between VRNT and MG adoption. We find, aside from size and income differences, which reflect the economic cost barrier to adoption, an attitudinal difference, in terms of optimism towards the technology's economic return leading to more probability of uptake. Moreover innovative and information seeking behaviour also proved significant when upgrading from machine guidance to variable rate technologies. Subsidy and taxation were considered positive drivers of uptake within the community. However, results suggest that more indirect interventions, such as informational support to counteract industry bias, and demonstration to prove the viability of economic return may be effective at meeting land manager and policy expectations towards PATs

    Experimental demonstration of quantum memory for light

    Full text link
    The information carrier of today's communications, a weak pulse of light, is an intrinsically quantum object. As a consequence, complete information about the pulse cannot, even in principle, be perfectly recorded in a classical memory. In the field of quantum information this has led to a long standing challenge: how to achieve a high-fidelity transfer of an independently prepared quantum state of light onto the atomic quantum state? Here we propose and experimentally demonstrate a protocol for such quantum memory based on atomic ensembles. We demonstrate for the first time a recording of an externally provided quantum state of light onto the atomic quantum memory with a fidelity up to 70%, significantly higher than that for the classical recording. Quantum storage of light is achieved in three steps: an interaction of light with atoms, the subsequent measurement on the transmitted light, and the feedback onto the atoms conditioned on the measurement result. Density of recorded states 33% higher than that for the best classical recording of light on atoms is achieved. A quantum memory lifetime of up to 4 msec is demonstrated.Comment: 22 pages (double line spacing) incl. supplementary information, 4 figures, accepted for publication in Natur

    Autopsy in adults with congenital heart disease (ACHD).

    Get PDF
    The adult congenital heart diseases (ACHD) population is exceeding the pediatric congenital heart diseases (CHD) population and is progressively expanding each year, representing more than 90% of patients with CHD. Of these, about 75% have undergone surgical and/or percutaneous intervention for palliation or correction. Autopsy can be a very challenging procedure in ACHD patients. The approach and protocol to be used may vary depending on whether the pathologists are facing native disease without surgical or percutaneous interventions, but with various degrees of cardiac remodeling, or previously palliated or corrected CHD. Moreover, interventions for the same condition have evolved over the last decades, as has perioperative myocardial preservations and postoperative care, with different long-term sequelae depending on the era in which patients were operated on. Careful clinicopathological correlation is, thus, required to assist the pathologist in performing the autopsy and reaching a diagnosis regarding the cause of death. Due to the heterogeneity of the structural abnormalities, and the wide variety of surgical and interventional procedures, there are no standard methods for dissecting the heart at autopsy. In this paper, we describe the most common types of CHDs that a pathologist could encounter at autopsy, including the various types of surgical and percutaneous procedures and major pathological manifestations. We also propose a practical systematic approach to the autopsy of ACHD patients
    • …
    corecore