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1.  Introduction

The prescient need for sustaining soil quality to maintain and extend productivity potential, whilst 
simultaneously supporting a range of ecosystems services, makes precision farming a possible 
pathway for meeting global ambitions towards food security (Gebbers and Adamchuck, 2010; 
Telabpour et al., 2015).   Precision agricultural technologies (PATs) are a set of technologies that are 
aimed at the management of in-field heterogeneity (Stafford, 2000; Fountas et al., 2005; Reichardt 
and Jürgens, 2009; Aubert et al., 2012).  A range of benefits have been aligned with the uptake of 
PATs and these have focused on improved resource use productivity, reduced input usage and cost, 
in particular labour and management time, with wider associated benefits from targeted application 
of agrochemicals and nutrients (Godwin et al. 2003; Silva et al., 2011; Kinred et al., 2015; Smith et al. 
2013; Eory et al. 2015; Schimmelpfennig, 2016).  PATs have been in development for the last 3 
decades, since the commercialisation of global positioning systems and we can identify four differing 
technological hierarchies of PATs (Figure 1).

Figure 1.  Hierarchy of Precision Agricultural technologies

These hierarchies imply different levels of user engagement and, by implication, the requisite farmer 
or operator skill and acquired learning needed to operate these technologies. A number of authors 
identify two major types of user engagement, based on their level of interaction and the learning 
investment needed by the operator (Griffin et al., 2004; 2005; Daberkow et al., 2003; Popp et al., 
2002; Miller et al., 2017).  They identify ‘embodied knowledge technologies’ which require no 
additional skills for their operation, for example automated guidance systems which allows precise 
control of machinery in the field; and ‘information intensive technologies’ which provide additional 
information that offer insights for decision making, but also require further investment, in terms of 
knowledge, software or analytical service support for data analysis, for example from variable rate 
application technologies. 

The attraction to policy makers of PATs within the farming community is that they may allow a step 
change in productivity to meet food supply requirements under land constraints and an increased 
desire for environmental monitoring (Zarco-Tejada et al., 2014; Schrijver et al., 2016). The current 
policy framework for PATs, and precision farming generally, is diffuse.  Schrijver et al.  (2016) outline 
potential European policies which are affected or may have to change to accommodate adoption of 
PATS.  These include environmental regulations and directives focused on air, carbon and water 
pollution; regional policy which accommodates both the integration of broadband and mobile data 
networks in rural and remote rural regions; and the potential for alternative employment within 
these communities from on-farm PAT adoption.  Moreover, a whole tranche of industry wide 
policies, pertaining to food traceability, data access and storage, and intellectual property rights 
have to evolve if PATs are to become an intrinsic part of the fabric of future European farming.  
More indirect drivers, through tightening of the Nitrates directive, may encourage some farmers to 
use N-efficient agronomic measures or technologies, such as variable rate nitrogen applicators. 
Similarly, if policy shifts towards rewarding public goods generation then payment mechanisms may 
incentivise organisation and collection of environmental data for basing payment rates (Barnes et 
al., 2011; Helm, 2017).

PATs also challenges the farming population to change working practices, requires high initial capital 
investment and added maintenance costs. A range of services from different consultancies have 
emerged which are allied to farming and provide analysis of the intensive data collected by PATs and 
related satellite imaging technologies.  This diversity of service provision might have a lock-in effect 
due to, for example the incompatibility between different components of PATs and, consequently, 
negatively affect the uptake of PATs (Aubert et al., 2012; Robertson et al. 2007).  A further set of 
barriers emerge from the regulatory, technological and policy environment which may provide 



restrictions, e.g. on unmanned aerial vehicles or access to internet based services in remote rural 
regions, which hamper uptake for particular members of the farming community (CSA, 2015).  

The aim of this paper is to understand the internal and external determinants of the adoption of 
PATs within a European cross-country setting.  The first objective is to analyse the characteristics 
behind non-adoption compared to adoption of PATs, in order to assess the potential barriers 
towards uptake.  Secondly, we assess the characteristics across an adoption transition, from an 
‘embodied knowledge’ technology to an ‘information intensive’ technology.  In so doing we aim to 
understand the institutional drivers behind greater uptake of PATs.  This assessment will allow us to 
provide insights for future interventions of agricultural policy within Europe.

A number of studies have examined the current uptake of PATs and generally find low adoption 
levels.  These show that uptake is partly dependent on region or the focus of the technology. 
However, available literature is mostly focused on certain states of the US and Australia where PATs 
uptake is well documented (e.g. Robertson et al., 2007; Kingwell and Fuchsbichler, 2011;  Holland et 
al., 2013; Miller et al., 2017).  Within Europe, uptake rates are less well explored and available 
studies are focused on specific countries (Paustian and Theuvsen, 2016; Lencsés et al., 2014; Kutter 
et al., 2011; Lambert et al., 2015).  Moreover, given the perceived potential of precision agricultural 
technologies, as a mechanism to meet both food production and environmental pressures, it would 
seem important to focus efforts on assessing the potential of precision agricultural technologies 
across regional farming systems. This will complement the ubiquity of US based studies and provide 
some perspective towards the role of PATs within the EU.

We focus our study on two different PATs, namely machine guidance as an ‘embodied knowledge’ 
technology and variable rate nitrogen application technology as the ‘information intensive’ 
technology. These are defined, and were presented to farmers, as below:

Machine guidance: “Guidance technologies are systems that pilot machinery using 
Global Navigation Satellite Systems (GNSS). They enable farm machinery to follow 
straight lines to reduce overlaps and avoid gaps of the tractor and equipment passes.  
In order to use machine guidance systems, one needs a GNSS receiver in the tractor or 
mounted on the machinery and a light bar or a display on-board to provide driving 
direction. A more advanced option is to use machine auto-guidance systems (or auto-
steering), which are integrated in the tractor’s hydraulics and can directly take over 
steering operations”.

Variable rate nitrogen application technology (VRNT): “enable changes in the 
application rate to match actual need for fertiliser in that precise location within the 
field. The basic idea is that, according to an electronic map or sensors, a control 
system calculates the input needs of the soil or plants and transfers the information 
to a controller, which delivers the input to the location”.

We employ a survey across five European countries representing different levels of intensity of 
arable production in order to identify what factors may lead to uptake.  Generally these represent 
more larger scale and intensive systems within Germany, the UK and the Netherlands, and smaller 
scale arable farming in both Belgium and Greece.  A cross-regional perspective is valuable as it 
provides reliable information on what particular factors are common across the European Union and 
which are regionally specific. 



2. Methods and Data Collection

Conceptual Framework
PATs represent the integration of specific technologies which serve multiple functions.  Farm 
machinery is augmented with information processing technology, data collection, real-time analysis 
and visualisation algorithms to support management decision-making.  Studies which concentrate 
on single  aspects of these technologies, e.g. Aubert et al. (2012)  utilise the  theory of technology 
acceptance (Davies, 1985) to understand uptake of information technology applications in farming.  
However, PATs represent a bundle of benefits perceived by the adopter and most studies tend to 
take a more holistic approach to understand the external and internal aspects factors driving uptake 
(Lima et al., 2018).  Tey and Brindal (2012) provided a synthesis of the major factors which 
determine uptake of  PATs, mostly from US based studies and we modify their categories to make 
them applicable to European farming systems.  Figure 2 shows the hypothesised relationships 
between the internal and external variables relevant to the two PATs explored here.
  
Figure 2.  Hypothesised Relationships between the variables and the two adoption states

Respondent characteristics
Formal education and age have been found to be significant predictors of adoption (D'Antoni et al., 
2012; Pierpaoli et al., 2013; Torrez et al., 2016).  These are common indicators of risk taking or 
innovative behaviour for most studies of technology adoption and seem to support the notion that 
younger and formally educated farmers are more likely to adopt PATs  (Ascough et al. 2002; Tiffin 
and Balcombe 2011; Walton et al., 2010; Lawson et al. 2011).  This is further evidenced by the lack of 
training and technical support perceived as an adoption constraint to uptake of precision agricultural 
technologies (Robertson et al., 2007; Reichardt and Jürgens, 2008).

Structural and financial characteristics
Studies on PAT adoption emphasise that adopters tend to operate a larger agricultural area, and 
subsequently generate a higher income (Fernandez-Cornejo et al., 2001;  Cullen et al., 2013; Faber 
and Hoppe, 2013; Lawson et. al., 2011, Montalvo, 2008; Blackmore et al., 2006; Schimmelpfennig, 
2016; Miller et al., 2017).  This indicates the ability to accommodate some risk in investment of 
newer and larger technologies.  Some studies identify owner-occupied farmers as more likely to 
adopt PATs, due to access to capital to enable investment in machinery (Putler and Zilberman 1988; 
Paustian and Theuvsen, 2016).  Hence it may be that owner-occupiers have greater financial 
leverage to purchase capital heavy PATs compared to tenanted farmers, who rent land and 
therefore tend to not have the capital to borrow against for purchasing these equipment. 

Farm and crop specialisation, inferred through the degree of income or the amount of land 
dedicated to specialised activities, are also potential predictors of adoption but these indicators are 
less common in the literature (Woodburn et al. 1994; Putler and Zilberman 1988; Castle et al., 2016), 
as has a focus on higher value crops (Blackmore et al., 2006).  Adopters seem to have a greater 
number of regular labour employed, which is indicative of higher intensity of production  (Paustian 
and Theuvsen, 2016).  Regions with high labour cost have increased PAT uptake potential when land 
is relatively less costly (Swinton and Lowenberg-Deboer, 2001). In addition, Schimmelpfennig (2016) 
found unpaid farm labour, which is an opportunity cost, to be negatively associated with adoption of 
guidance systems and variable rate technology, as access to a large pool of family labour generally 
acts as a disincentive to uptake of technologies which are labour saving.  

Number of PATs adopted
On-farm technological factors have also been found to predict adoption of PATs.  Effectively, this 
infers that the presence of other technologies at the farm level will increase the probability to adopt 
the PAT (Griffin et al., 2017).  Lambert et al. (2014) assumed PAT uptake to be a set of 'bundles' of 

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8489.2011.00549.x/full#b1
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technology which are contingent on adoption of other PATs.  Miller et al. (2017) estimated Markov 
transitions of these adoption ‘bundles’ of PATs in a longitudinal dataset of Kansas farmers.  They 
found that currently intensive adopters, defined as having three PAT technology bundles, were less 
likely to change adoption profiles compared to those which had adopted one or two bundles of 
PATs.  Part of this they attributed to the attraction for data service providers who work with 
information heavy farmers (with more intensive bundles of technologies).  This is because the farm 
is more likely to continue to provide specific data and therefore become more cost-effective for the 
data analysts.

Influencers of adoption 
The use and perceived usefulness of consultants has been found to be positively linked to uptake of 
PATs (Reichardt and Jürgens, 2008).  Better access to information has an effect on improving the 
overall attractiveness of the innovation. It also increases the knowledge of innovation 
implementation, reducing the uncertainty towards the potential benefits (Marra et al., 2003). Hence, 
this can link to the use of advisors or consultants, but also infers membership of marketing co-
operatives and machinery collective groups where information is passed through informal 
mechanisms, usually from farmer to farmer.  Busse et al. (2014) explored the knowledge gap 
between different actors involved in PAT adoption, namely the input suppliers, dealers, farmers, 
scientists and policy makers.  In a workshop study of German PAT stakeholders they found a gap in 
the transfer of knowledge between science and practice and, ultimately, limited communication and 
collaboration between farmers and technology providers. 

Attitudinal characteristics
Economic profitability is a major concern when considering the adoption of any agricultural 
technology and the level of perceived profitability of adopting precision agriculture technologies has 
been found to dictate uptake (Olson and Elisabeth, 2003; D'Antoni et al., 2012; 
Watcharaanantapong et al., 2014; Castle, 2016; Schimmelpfennig, 2016). Robertson et al. (2007) and 
Montalvo (2008) identified knowledge gaps towards estimating the return on investment which 
leads to an inability to economically assess these technologies.  A behavioural factor which has also 
been found to have a positive effect is the willingness of farmers to trust the technology. For 
example, a number of studies have found low levels of trust in the technology to be a key limitation 
for PATs adoption, relative to other factors (Mims et al., 2005; Montalvo, 2008; Bogdanski, 2012; 
Eidt et al., 2012).

Regional characteristics 
Regional specific contextual factors, such as the presence of farmer co-operatives and the industrial 
structure of suppliers will determine the access to and availability of particular PATs.  Accordingly, 
regional institutional factors will influence adoption (Paudel et al., 2011; Lambert et al., 2015).

Data Collection
In order to gather information on the potential for uptake of PATs a survey was conducted between 
August 2016 and February 2017 across five European countries (namely the UK, Germany, The 
Netherlands, Belgium and Greece).  These countries were chosen to represent a diversity of different 
institutional structures (e.g. access to regional consultancy services), as well as structural factors 
(e.g. in terms of farm size and intensity of production) but also operating under a common European 
policy framework, all be it with regionalised approaches to regulation and reporting.  

The sample was targeted at arable crop farmers and farm managers that were cultivating wheat, 
which is the arable crop most widely cultivated in Europe, covering 24% of the utilised agricultural 
area of arable land and accounting for 44.8% of the total cereal production in the EU (Eurostat, 
2015), and/or potatoes (which is a high value crop, with a high economic output per ha per year), in 
the 2015/2016 cropping season. In Greece, cotton farmers were surveyed as a replacement for 



potatoes, as cotton is a main crop within Southern European states and potatoes are only marginally 
grown.

For sampling, farmers were stratified into 3 categories of technology adoption using definitions for 
the chosen PATs: 

i) Non-adopters: farmers who currently have not adopted MG only or VRNT bundled 
technology; 

ii) MG Only adopters: farmers who currently own or rent machine guidance, and; 

iii) VRNT bundle adopters: Farmers who currently own or rent both variable rate nitrogen 
technology and machine guidance.   In order to operate VRNT, machine guidance is needed.  
For some farmers this is an addition to their current PATs while for others it comes as a 
complete bundle.  Hence this choice reflects adoption of both technologies.

These were chosen to reflect a hierarchy of adoption from those disinterested or unable to engage 
in the technology to those heavily invested in PATs.  Hence, some gradient could be drawn in order 
to quantify the differences across these three adoption groups.  There are no specific representative 
databases on PAT adoption in Europe and we employed a multiple sampling approach as a means to 
create enough responses within these three categories.  They were contacted through trade fairs, 
machine dealers, agricultural databases and personal contacts. Table 1 shows these by interview 
method, e.g. telephone, or face to face, and by contacting method.  

Table 1: Distribution of contact methods by region, number of individuals

Table 2 outlines the key descriptive variables for the sample by each of the three adoption states. 
Differences emerge which reflect the diversity of case studies covering both Northern and Southern 
European Systems.  The farmers managing larger areas in Germany and the UK shows average 
utilised agricultural area which ranges from around 200 ha up to over 1000 ha.  The largest farm 
sizes were recorded for Germany, and this has some of the largest average agricultural areas in 
Europe (Eurostat, 2015).  These regions, along with the Netherlands, are generally intensively 
managed arable systems.  Both the Netherlands and UK have larger areas of potatoes grown, as they 
are principally the main growers of seed and ware producers in Europe (Eurostat, 2016).  All 
countries have significant portions of land dedicated to cereals, again with the larger scale, more 
intensive, producers of wheat in the UK, Germany and the Netherlands.   This intensity of production 
is reflected in the greater number of regular employees, in addition to farm family labour.  
Conversely, whilst only small average areas were identified, Greece has one of the largest 
agricultural labour forces within the EU (Eurostat, 2015) and this is reflected here, reflecting both 
cotton and cereals production.  For most regions, as with previous studies on precision farming, non-
adopters generally manage smaller areas than the adopters, but there is a more explicit increase in 
size characteristics between MG Only and VRNT bundle adopters.  

Table 2.  Descriptive statistics of main land use and labour categories from the survey by region, 
mean and standard deviations



Data Analysis
Common with studies of technology uptake most studies of PAT tend to take a General Linear 
Modelling approach and apply mainly multinomial logit or multivariate probit regression frameworks 
to examine the differences of influencing factors on a specific or a multiple set of technologies 
(Bannerjee et al., 2008; Paudel et al., 2011; D'Antoni et al., 2012; Torrez et al., 2016).  A problem for 
cross-regional studies is how to accommodate for regional differences within a multinomial 
estimation framework.  Applying dummy variables is inadequate when data are clustered by region, 
which will reflect the specific institutional characteristics outlined above and provide false standard 
errors.  Accordingly, as our study covers five countries we propose a random intercept model.  This 
allows us to control for the variation at both the regional level and the individual level.   

Our analysis followed two complementary approaches.  A multinomial approach (MLN) was used to 
estimate the determinants of adoption of the two technologies, as these are two different states of 
adoption (i.e. MG Only and VRNT bundle). The MLN covers more than two relative states of 
adoption, which would match the adoption profile observed here, and offers a relative estimate of 
the factors which determine adoption of MG Only compared to non-adoption, or the VRNT bundle 
compared to non-adoption.  A binomial approach was then applied to the sub-sample of adopters in 
order to assess the factors that determine the adoption of the VRNT bundle compared to MG Only, 
which reflects the difference from an embodied knowledge technology to an information intensive 
technology.  

A multilevel mixed-effects logistic regression framework was chosen to control for the influence of 
regional heterogeneity across the sample. A random intercept model, using the five regions as the 
level-2 nested clusters, was estimated to examine both variance at regional level and the influence 
of explanatory variables on determining uptake of PAT. The basic random intercept model is shown 
in Equation 1:

  (eq. 1)𝑦𝑖𝑗 = (𝛽1 +  𝜁1𝑗) +  𝛽2𝑥𝑖𝑗 +  𝜖𝑖𝑗

where  is a random intercept indexed across the regional identifier (j). Hence,  represents the 𝜁1𝑗 𝜁1𝑗
deviation of region j’s intercept from the mean intercept . Estimation was conducted using the 𝛽1
GLLAMM package (Rabe-Hesketh et al., 2005) within Stata Version 15 (Stata Corp., 2017). 

A logistic link model was used for the number of nominal outcomes, that is, (0) non-adoption, (1) 
MG Only, and (2) VRNT bundle. Thus, considering the range of outcomes (y), the predicted 
probability of the i-th farmer choosing a nominal outcome is (y = 0,1,2).  This provides indications of 
the probability of a change in an independent variable (x) affecting membership of one of the three 
states of adoption. A binominal logistic regression simply reduces the nominal outcomes to a 
binominal structure (y=0,1).

The MLN regression estimates a set of binomial regressions between the base outcome state, in this 
case non-adoption, and the reference states, MG Only and VRNT bundle adoption.  A total of 17 
variables, grouped into 5 categories (Table 3) were selected, based on the conceptual framework 
above, to analyse the factors that we would expect to have some influence on adoption of precision 
agricultural technologies.  Categorical responses were converted into dummy variables and are 
presented conditional on the reference value specified. 

Table 3.  Variables used within the empirical model 

In order for efficient estimation some categories were compressed or converted into binary 
indicators, for example, education was reduced from a 6 point scale to a binary variable to infer the 
effect of post-school agricultural education compared to no formal agricultural education.  It would 



be expected that, given the technical nature of PATs, those with agricultural education would be 
more likely to adopt these technologies compared to those without agricultural education. Similarly, 
for income specialisation, which was a categorical response, this was reduced to a binary variable 
reflecting specialisation of income generated from a particular enterprise.   

3.  Results

Table 4 shows the marginal effects of both the multinomial logistic regression and the binomial 
logistic regression.  What emerges are similar patterns of significance for MG Only and VRNT bundle 
adoption compared to non-adoption, but differences between MG Only and VRNT bundle adoption. 

Table 4. Estimates for multinomial and binomial random intercept models (marginal effects)

Size of farm is significant and marginally positive compared to non-adoption. As utilised agricultural 
area expands there is a slightly higher propensity for farmers to adopt MG Only or VRNT bundles 
compared to non-adoption.  The effect is similar to the positive effect of land area found by a 
number of authors (Fernandez-Cornejo et al., 2001; Pierpaoli et al., 2013; Castle et al., 2016; 
Schimmelpfennig, 2016). Notably for the binomial model this is not significant, indicating that size 
may be a threshold indicator between adoption and non-adoption but is not characteristic of 
adopting VRNT bundles above MG Only.  

Age of farmer is significant for adoption of MG Only technologies, indicating that as farmers get 
older they are less likely to adopt these technologies, with a greater probability that they will not 
adopt when farmers are over 65 years of age.  This matches previous findings on age and highlights 
the short planning horizon of older farming as a barrier to invest in PATs (Lambert et al., 2015; Miller 
et al., 2017).  Specialised agricultural education was developed as a predictor for uptake.  This 
variable was used to infer a higher level of knowledge towards agricultural decision-making to 
capture the shift to an information intensive based technology.  However, this did not prove 
significant.  In addition we find no significant impact on land ownership determining adoption of 
either technology.  This has been seldom explored within past studies, although Paustian and 
Theuvsen (2016) found some significant differences on PAT adoption with farmers who leased larger 
areas of land.  However, they did not specifically examine ownership status as a predictor of uptake. 

Household income is also an important factor in determining adoption of PATs as it reflects the 
economic barrier to non-adopters.  Specifically, higher levels of income creates the capacity to  
accommodate longer payback periods as this infers the availability of cash reserves to handle longer 
time periods for paying back the technology.  The effect of income is positive and the magnitude is 
larger for those adopting  MG only compared to VRNT technologies.  This result agrees with 
literature on PATs, indicating that adoption has high entry costs and higher income farmers are more 
likely to adopt them (Diederen et al., 2003; Schimmelpfennig, 2016; Miller et al., 2017).  Again, 
income did not determine adoption of VRNT bundles compared to MG Only uptake within the 
binomial regression, which may be reflective, like size of holding, of a threshold effect needed to 
adopt PATs rather than discriminate between PATs.   

Specialisation of income from wheat or potatoes is not a factor for adoption.  Nevertheless, the ratio 
of arable land to total land has high probabilities of adoption for both MG only and VRNT bundles 
against non-adoption.   This can also indicate economies of scale and the reducing of costs on a per 
unit basis enables a return to investment on PATs. 

If a farmer is a member of a co-operative then there is some observed positive effect on uptake of 
MG only technology.  Co-operatives and machinery rings do not as a whole provide support services 
for precision agriculture, e.g. data analysis, however they can serve as a proxy for information 
transfer between farmers (Rogers, 2003; Larson et al., 2008; Robertson et al., 2012; Lambert et al., 



2015; Dimos et al., 2017).  This has no effect on adoption of a VRNT bundle, perhaps indicating that 
this latter technology is more likely to be purchased within the farm rather than as a group asset to 
be shared amongst farmers.

Attitudinal factors have some effect.  If the farmer perceives that PATs will provide an acceptable 
payback they are more likely to adopt machine guidance PATs compared to those who do not agree 
with this statement. Walton et al. (2008) used a fairly simple indicator of expected profitability but 
did not find a significant relationship. Hence, our attitudinal variable may capture a longer term view 
of returns to investment.  Consequently, this attitudinal position offers some indication of potential 
for uptake of machine guidance.  In addition, the level of current adoption of PATS (not including MG 
or VRNT) is used as a proxy for innovative behaviour and we find that if farmers have other PATS on 
the farm they are more likely to adopt both technologies. This agrees with a number of studies that 
show the effect of higher levels of technology on the farm which dictates PAT adoption (Isgin et al., 
2008; Paxton et al., 2011; Castle et al., 2016).  As would be expected a VRNT bundle is a more 
advanced technology, which may explain the greater influence of this variable. The technologies, 
which are similar to MG and VRNT,  can also be understood as an indication that farmers also have 
access to ancillary capacity for data collection, processing and decision making (Miller et al., 2017). 

The statement on perceived profitability, ‘I am too uncertain of the effects of PAT to invest in it’ is 
negative and significant for those who adopt VRNT bundles, compared to MG only.  This may be 
indicative of the differences in the type of technology adopted, where one is embodied knowledge 
and the other information intensive. Specifically, the perception of the PAT having an effect is more 
explicitly embodied in VRNT which encourages more active engagement compared to MG, which is 
passive, and therefore the perceived effect of adoption is much lower. In addition, it may be 
attached to the income effect, where larger enterprises who are more likely to adopt VRNT would 
also be more likely to adopt systematic approaches towards calculating the return to investment of 
different technologies (Martin et al., 2017; Shockley et al., 2017).  However, calculating return on 
investment for PATs is complicated by the heterogeneity of individual farm land (Robertson et al., 
2007; Montalvo, 2008) and it may be that the large income of VRNT adopters simply creates a buffer 
for absorption of losses at the whole farm scale and therefore may simply generate optimism 
towards payoffs from this technology. 

Only the adopters were queried on external influences on adoption, and there was a significant and 
positive effect for the use of an advisor. Robertson et al. (2012) and Larson et al. (2008) also 
identified advisors as a source which farmers respond to and lead to greater likelihood of adoption 
of these technologies.  However, whilst advisors provide a source of information which influences 
their decision to adopt VRNT there seemed to be no effect of farmer-to-farmer networks on uptake 
of VRNT bundles compared to MG Only.  A great deal of literature has focused on the effect of peer 
group influences (see Rogers, 2003) though little has been applied within the arena of PAT adoption.  
It may be that the economic significance of the decision, in terms of the technology applied, may 
dissuade the focus on farmer to farmer networks and rely on technical support from advisors but 
this needs to be tested further within the literature.  

4. Discussion and Conclusions

A large scale survey of cross-regional attitudes and perceptions towards uptake of PATs provides a 
detailed understanding of the commonality of barriers between adopters and non-adopters across 
countries and, consequently, identifies potential public interventions which encourage uptake. 

The main barrier found within the literature seems to be the high cost of entry and this is further 
confirmed here as bigger farms tend to be more likely to adopt PATs, compared to smaller farms, 
but also very large farms are more likely to adopt an information intensive PAT package.  The 



operation of variable rate technology is intrinsically different to machine guidance, which is passively 
operated, and a VRNT bundle provides opportunities for greater interaction with, and a more 
codified approach towards, the heterogeneity of a farm’s terrain.  This is in contrast to the 
embedded knowledge of the farmer towards their land and raises issues on how PATs may be 
challenging farmer identities towards farming and their farming knowledge itself (Tsouvalis et al., 
2000; Burton et al., 2004). 

Uptake of VRNT bundles may also infer a particular attitudinal perspective or explicit profit driven 
approach to farming that dictates uptake.  This is further confirmed here as those farmers with less 
uncertainty towards the economic return of VRNTs are more likely to invest in them.  Given that 
PATs are generally high cost and conditioned to work across heterogeneous soils, there would be 
more expectation of an economic return from this investment.  Numerous studies have found, if 
operated optimally, that adoption of PATS is positive for economic goals (e.g. Godwin et al., 2003; 
Batte and Ehsani, 2006).  This ‘economic certainty’ may also be supported by the economic size of 
the farm to leverage risk taking. 

Arguably, the present income support payments under the Common Agricultural Policy, although 
now mostly, and technically at least, decoupled from production, provides a hedge for risk taking 
and therefore indirectly does support adoption of newer technologies, of which PATs will be the 
primary target.  Consequently, the reduction in CAP support which has been observed over the last 
two decades, and indications that this will reduce further (European Commission, 2017), may lead to 
a bi-modal direction of travel for farming communities with regard to PATs. Effectively, larger profit 
motivated farmers will be the primary users of PATs, whereas the remainder will be non or low-level 
adopters. The reduction of subsidy, which could negate some of the risk to investment, may further 
remove the incentive for this low-level adoption community to participate and therefore create 
further inequalities in the farming sector. Hence, public policy intervention may induce innovation 
within the farming industry by supporting data solutions that are required for running bundles of 
PATs in rural regions, with the free provision of geospatial mapping data at fine resolutions for 
European countries.  This may provide a useful route for increasing awareness, as large scale 
investment within a country's infrastructure may raise the expectation of a positive economic 
return.  

Information intensive technologies also require a further investment in learning and there may be a 
gap between industry support and the user ability to operate machines optimally. Given the 
attitudinal and resource constraints outlined above, support for learning may offer a stronger 
argument for the role of the public sector in PAT uptake.  It emerged that around 50% of 
respondents in the survey ranked some form of training as a potential incentive to encourage uptake 
(Figure 2).  However, from the respondents' perspective the most popular stated incentives would 
be financial incentives or more certainty that the technology would improve biophysical or economic 
performance.  The lack of certainty may also echo the previous findings that farmers cannot assess 
the rate of return to investment, or do not trust experimental farm studies given potential 
heterogeneity of individual farms.  Nevertheless, the dissemination of knowledge around the effects 
of PATs, operating within different regions and contexts would seem to be a means to negate this 
uncertainty and potentially support a decision to purchase the technology.  

Figure 3.  Incentives for encouraging uptake, ranked by response

The planning transition between non-adoption and adoption is complicated by the influence of 
machinery suppliers on determining the purchase decision and negation of skepticism towards the 
perceived results from adoption.  Promotion of PATs through Government support may, therefore, 
be through demonstration of actual benefits and support for training.  Whilst there is some EU 
support for modernization of machinery, there is no regulatory push to adopt PATs and this is purely 



a commercial decision.  However, whilst the prevailing feeling towards precision farming in public 
policy circles is favorable, it is questionable whether the public sector really has a role in supporting 
adoption of PATs at all.  The development of PATs is an example where commercialization by 
industry will recoup private returns (Barnes, 2001).  Consequently, the focus of policy incentives may 
be more acceptable, given resource constraints, when targeted towards engagement in knowledge 
building and demonstration of PATs to encourage efficient use and uptake.  

The main argument for government intervention relies on the ability of PATs to improve resource 
use efficiency at such a level that public goods will be protected and preserved whilst increasing the 
supply of food needed for a growing population.   However, there is a paucity of studies to indicate a 
compelling link between the ability of PATs to both reduce environmental impacts and increase 
economic benefits.  Studies tend to argue that there are great sensitivities which limit obtaining 
consistent results when applied in practical field situations (Wheelen and McBratney, 2000; Brennan 
et al., 2007).

This highlights a cultural challenge embedded in PATs, as, whilst the ethos of precision agriculture is 
to take a more targeted approach to farming, PATs represent a distinctively technological approach 
to agriculture which may not match the perspectives of low-input, extensive or organic producers. 
This questions the public support for precision agriculture within farming generally as, unlike, other 
holistic management approaches, such as integrated farm management, precision agriculture could 
lead to more input usage through greater intensification.  This may present an example of a 
'rebound' effect where increased resource use efficiency leads to unintended resource depletion as 
systems increase in scale (Alcott, 2005)  The further alignment of these PATS to the contested term 
‘sustainable intensification’ (Godfrey et al., 2010; Gebbers and Adamchuck, 2010) may also create 
barriers to small-scale, or organic and low-input farmers who could benefit from adoption of PATs 
but are deterred by this technological ethos (Hanspach et al., 2013; McDonagh, 2015; Barnes et al., 
2016). 

It is less clear that conventional socio-economic characteristics determine uptake. Whereas past 
literature does find operator age and education to be important (Tey and Brindal, 2012) a recent 
study in Germany could find no significant effect of these factors (Paustian and Theuvsen, 2016). We 
find that, on the whole, younger farmers are more likely to adopt the technology. This potentially 
links to the knowledge requirements to optimally operate information intensive technologies, and 
age is also perhaps reflective of literacy in operation of more computationally intense machinery.  
For other categories of adoption and non-adoption we could find no effect of educational status. 
Within the literature on technology adoption education does generate mixed results. This is perhaps 
also reflective of Huffman’s (2001) argument that education variables tend to lead to biased 
interpretations of intellectual achievement which, in terms of precision agriculture, should extend to 
skills accommodating data management and interpretation, and knowledge of more complex 
operating systems. Potentially this calls for a more sophisticated latent variable approach to 
understanding uptake, where the farmer state of knowledge is inferred by a number of candidate 
variables of which only aspect is educational attainment (e.g. Toma et al., 2018). 

Furthermore, it may be the case that farmers who positively perceive that PATs would payback, 
which leads to more uptake, may be an artifact, at least for some farmers, of post-purchase 
rationalization bias (Cohen and Goldberg, 1970).  Effectively, given the high level of investment 
required, farmers are seeking self-assurance or legitimacy to validate their decisions and may view 
outcomes as more positive, even though they haven’t experienced them yet. This phenomenon 
could be explained through “cognitive dissonance” theory (Festinger, 1957), which states that 
contradictory beliefs or ideas (e.g. the decision to adopt a PAT while considering that it may not be 
profitable) cannot be held at the same time without creating a tension and conflict in the individual.  
The results presented here indicate that the decision to progress from the adoption of an embodied 



knowledge technology (i.e. MG) to an information intensive technology (i.e. VRNT) is significantly 
influenced by farm advisors. This might be linked with the fact that when venturing into more 
expensive and data demanding technologies, farmers seek support from experts to validate their 
decisions (Tsouvalis et al., 2000; Ingram, 2008).

Some of this may be evidenced by the polarity of opinion expressed by adopters towards machine 
guidance which were balanced in equal proportions of agreement and disagreement towards 
whether the technology would payback. This may infer that there are further groups operating 
within these adoption states based on outlook and experience of the PAT and perhaps further work 
can explore ways to cluster farmers beyond the purely technology adoption states presented here 
(see for example Barnes et al., 2011; Islam et al., 2013)

Finally, whilst we have quantified the main drivers of uptake it is probably the case that softer 
factors also determine adoption and this may make regional differences more explicit, such as 
farmer to farmer networks and inequality of commercial interests.  Moreover, the opportunities for 
demonstrating the technology, through researchers and trade fairs may provide an important aspect 
of the determining uptake of these technologies. The literature on PATs is lacking in any detailed 
qualitative studies of uptake and further work should probably examine the role of these cultural 
factors of farming and how sophisticated technologies, such as PAT, may create barriers to future 
adoption.
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Figure 1.  Hierarchy of Precision Agricultural technologies

Source: modified from Balafoutis et al. ( 2017)



Figure 2.  Hypothesised Relationships between the variables and the two adoption states 



Figure 3.  Incentives for encouraging uptake, ranked by response
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Table 1: Distribution of contact methods by region, number of individuals

 
Interview 
Method n

Farmers contacted 
through: n

Face to face 200 Machinery dealers 183Greece (n=200)

Telephone 0 Personal contacts 17

Face to face 196 Personal contacts 196Belgium (n=196)

Telephone 0  

Face to face 175 Trade fair 142Netherlands (n=176)

Telephone 1 Personal contacts 34

Face to face 0  Germany (n=195)

Telephone 195  Agricultural Database 195

Face to face 134 Trade fair 28UK (n=204)

Telephone 70 Agricultural Database 176



Table 2.  Descriptive statistics of main land use and labour categories from the survey by region, mean

  
Winter Wheat, 

ha
Spring 

Wheat, ha

Ware 
Potatoes*, 

ha
Seed 

Potatoes, ha

Utilised 
Agricultural 

Area ha
Arable Area, 

ha
Full-Time 

Employees
Family 

Members

Part-Time & 
Seasonal 

Employees

Non-Adoption (n=150) 5.2 (7.0) 0 (0.02) 4.8(8.5) 0.0 (0.0) 35.7 (24.4) 25.4 (18.5) 0.0 (0.4) 1.4(0.9) 0.8(1.1)
MG Only (n=42) 10.6(10.2) 0.1 (0.8) 13.7 (15.0) 3.1 (15.25) 70.6 (38.1) 57.1 (37.5) 0.1 (0.2) 1.6(0.8) 1.2(1.9)

Belgium VRNT Bundle (n=4) 7.3 (3.8) 0(0.0) 13.3(15.9) 0.3 (0.5) 49.3 (24.4) 40(32.3) 0(0.0) 1.8(0.9) 2.3(2.6)

Non-Adoption (n=102) 33.3 (32.0) 14.3 (21.9) 12.5*(15.4) 67.8 (54.9) 67.4(54.8) 2.2(1.2) 1.8(0.73) 2.1(1.8)

MG Only (n=71) 25(27.2) 36.1 (36.2) 14.6*(23.6) 82.1(35.9) 82(36.1) 2.7(1.1) 1.9(0.7) 2.3(1.3)

Greece VRNT Bundle (n=27) 47.8(33.9) 43.3(42.1) 55.7*(52.1) 153.4(43.2) 153.4(43.2) 4.2(1.3) 2.2(0.9) 3.6(2.0)

Non-Adoption (n=47) 33.7(36.8) 11.7(14.9) 4.3(10.5) 5.5(10.1) 228.3(210.6) 166(119.8) 1.4(1.4) 1.4(1.1) 5.1(18.3)
MG Only (n=61) 54.3(50.1) 30.7(36.7) 7.6(13.6) 7.3(13.8) 251.8(130.9) 209.8(111.9) 1.8(1.9) 1.5(1.3) 3.8(10.2)

UK VRNT Bundle (n=96) 70.5(68.8) 35.7(42.2) 5.4(10.8) 4.2(9.5) 352.4(426.3) 252.8(163.6) 2.0 (2.2) 1.2(1.1) 2.9(6.6)

Non-Adoption (n=79) 25.3(28.7) 0.4(1.8) 3.7 (9.9) 0.1(0.7) 141.7(187.3) 106.1(127.6) 1.0(2.5) 1.1(0.9) 0.9(1.5)
MG Only (n=66) 147.5 (244) 2.1 (12.6) 16.6 (56.6) 1.4(5.7) 639.9 (984.1) 537.5(821.4) 6(12.1) 1.2(1.2) 3.4(7.4)

Germany VRNT Bundle (n=50) 284.6(352.9) 1.2(7.2) 18.5(46.0) 1.6(7.6) 1046.1 (1122.0) 847 (883.7) 10.3(13.1) 0.9(1.1) 2.3(3.9)

Non-Adoption (n=50) 11.6(9.5) 0.8(2.8) 11.1(13.5) 4.7(15.4) 52.8(42.0) 48.9(41.9) 0.5(1.5) 1.1(1.1) 1.1(2.0)
MG Only (n=84) 33.3(58.2) 1.1(4.9) 61.5(278.7) 6.6(15.2) 156.6(289.9) 152.2(391.1) 0.9(1.2) 1.4(1.2) 2.1(3.8)

Netherlands VRNT Bundle (n=42) 64.5(101.2) 5.6(13.7) 70.4(111.0) 7.3(11.7) 229.2(303.3) 211.1(238.58) 1.8(2.9) 1.4(0.9) 1.2(1.2)
*For Greece this refers to Cotton area, Ha; 
MG Only: respondents who only adopted machine guidance; VRNT Bundle: those respondents who adopted both machine guidance and variable rate nitrogen management



Table 3: Variables used within the empirical model 

Variable Type Description

SOCIOECONOMIC CHARACTERISTICS

Age Categorical 0:<45; 1:45-65; 2:>65

Agricultural Education Binary 0: No formal agricultural education ; 1: post-school college 
or higher education in an agricultural subject.

Member of a marketing co-op Binary 0:Not a member;  1:Marketing Co-op

Member of machinery co-op Binary 0:Not a member; 1: Machinery Collective;

STRUCTURAL AND FINANCIAL CHARACTERISTICS

Size Continuous Sum of total area in hectares

Income Class Categorical 0:<100k; 1:100-300k; 2:+300K

Regular Labour Continuous Sum of regular labour in total staff numbers

Income Specialisation Binary 0: <60% of income from specific crop
1: > 60% of income from specific crop

Farm Specialisation Continuous Ratio of arable land to total land area from 0 to 1, where 0 is 
no arable land to total land area and 1 is arable land covers 
total land area

CURRENT TECHNOLOGICAL ADOPTION

Level of current technological 
adoption*

Continuous A scale from 0 to 4 which indicates the amount of other 
PATs currently on farm where 0= no other PATS and 4=4 
other PATs.

ATTITUDINAL CHARACTERISTICS 

Positive towards payback Binary Attitudinal statement where 0 =  Not positive towards 
payback of PATS; 
1= Positive towards payback statement of PATs

Uncertain towards outcomes Binary 0: Less uncertain; 1: More uncertain towards outcomes

INFORMATIONAL CHARACTERISTICS

Advisor± Binary 0: Not an influence; 1: Advisors as influences of adoption

Farmers± Binary 0: Not an influence; 1: Other farmers as influences on 
adoption

Contractors± Binary 0: Not an influence; 1: Contractors as influences on adoption

INSTITUTIONAL CHARACTERISTICS

Management Structure Binary 0:Owner; 1: Tenant; 2: Other

± Only adopters were asked this question and therefore could only be used to compare different classes of adoption.

* This index did not include MG and VRNT PATs to avoid multicollinearity issues.



Table 4. Estimates for multinomial and binomial random intercept models (marginal effects)
  Multinomial Logit  Binomial Logit
  MG Only  VRNT Bundle   
  marginal effect  se  marginal effect  se  marginal effect  se
Age (reference class: <45)         
 45-65 -0.112 ** 0.036  -0.031  0.034  0.047  0.044
 Over 65 -0.256 *** 0.047  -0.082  0.046  0.089  0.087
Above school agricultural education 0.005  0.038  0.041  0.035  0.081  0.046

Management. Reference class: owner-occupied         
 Tenanted -0.073  0.069  -0.010  0.056  0.049  0.096
 Other -0.019  0.048  -0.057  0.039  0.015  0.058
Size  0.001 *** 0.000  0.001 *** 0.000  0.0001  0.000
Regular Labour Employed -0.003  0.013  0.004  0.010  0.001  0.006

Specialisation (reference class: less than 60% income from 
wheat)           

Potato Income 0.004  0.049  -0.011  0.044  -0.070  0.057
Wheat income 0.033  0.039  -0.054  0.036  -0.065  0.051
Ratio of arable land to total land 0.365 *** 0.097  0.361 *** 0.100  -0.046  0.129

Income class (reference class: less than 100,000 euros)         
                         100,000-300,000 Euros 0.075  0.040  0.039 0.047  0.004  0.051
                         >300,000 Euros 0.125 * 0.054  0.076 * 0.037  0.017  0.055
Level of current adoption of PATs 0.048 ** 0.016  0.066 *** 0.012  0.061 *** 0.017
Membership of machinery collective 0.090  0.048  0.035  0.045  -0.047  0.059
Membership of marketing co-operative 0.149 ** 0.051  0.072  0.041  -0.066  0.053
Positive towards payback 0.111 ** 0.033  -0.016  0.029  -0.050 0.055
More uncertain towards outcomes -0.019  0.038  -0.086 ** 0.032  -0.140 ** 0.042
Influenced to adopt by advisors         0.091 * 0.035
Influenced to adopt by other farmers         0.023  0.043
Influence to adopt by contractors         -0.025  0.035
Log-likelihood -507.6  -321.6
Number of Observations 971  543

Standard errors in italics * p<.05  ** p<.01  *** p<.001


