12 research outputs found

    Investigation of amphibian mortality events in wildlife reveals an on-going ranavirus epidemic in the North of the Netherlands

    Get PDF
    In the four years following the first detection of ranavirus (genus Ranavirus, family Iridoviridae) infection in Dutch wildlife in 2010, amphibian mortality events were investigated nationwide to detect, characterize and map ranaviruses in amphibians over time, and to establish the affected host species and the clinico-pathological presentation of the disease in these hosts. The ultimate goal was to obtain more insight into ranavirus disease emergence and ecological risk. In total 155 dead amphibians from 52 sites were submitted between 2011 and 2014, and examined using histopathology, immunohistochemistry, virus isolation and molecular genetic characterization. Ranavirus-associated amphibian mortality events occurred at 18 sites (35%), initially only in proximity of the 2010 index site. Specimens belonging to approximately half of the native amphibian species were infected, including the threatened Pelobates fuscus (spadefoot toad). Clustered massive outbreaks involving dead adult specimens and ranavirus genomic identity indicated that one common midwife toad virus (CMTV)-like ranavirus strain is emerging in provinces in the north of the Netherlands. Modelling based on the spatiotemporal pattern of spread showed a high probability that this emerging virus will continue to be detected at new sites (the discrete reproductive power of this outbreak is 0.35). Phylogenetically distinct CMTV-like ranaviruses were found in the south of the Netherlands more recently. In addition to showing that CMTV-like ranaviruses threaten wild amphibian populations not only in Spain but also in the Netherlands, the current spread and risk of establishment reiterate that understanding the underlying causes of CMTV-like ranavirus emergence requires international attention

    Course of an Isolated Ranavirus Outbreak in a Pelobates fuscus Population in The Netherlands

    No full text
    Viruses in the genus Ranavirus (family Iridoviridae) are known to have the potential to adversely affect fish, amphibians, and reptiles. Ranaviruses are associated with large-scale die-offs and rapid population declines in amphibians. The development and progression of an outbreak, however, vary greatly depending on the host species and geographic location. We describe the recurrent course of an outbreak of common midwife toad virus in an isolated population (Staphorst) of common spadefoot toads (Pelobates fuscus) in The Netherlands from 2012 to 2015. After initial mass mortality of toad larvae in 2012, no mass mortality was recorded in 2013 and 2014. In 2015, however, a recurrent outbreak of the virus is believed to have caused high mortality rates among this species in the Staphorst population

    Investigation of Amphibian Mortality Events in Wildlife Reveals an On-Going Ranavirus Epidemic in the North of the Netherlands

    No full text
    In the four years following the first detection of ranavirus (genus Ranavirus, family Iridoviridae) infection in Dutch wildlife in 2010, amphibian mortality events were investigated nationwide to detect, characterize and map ranaviruses in amphibians over time, and to establish the affected host species and the clinico-pathological presentation of the disease in these hosts. The ultimate goal was to obtain more insight into ranavirus disease emergence and ecological risk. In total 155 dead amphibians from 52 sites were submitted between 2011 and 2014, and examined using histopathology, immunohistochemistry, virus isolation and molecular genetic characterization. Ranavirus-associated amphibian mortality events occurred at 18 sites (35%), initially only in proximity of the 2010 index site. Specimens belonging to approximately half of the native amphibian species were infected, including the threatened Pelobates fuscus (spadefoot toad). Clustered massive outbreaks involving dead adult specimens and ranavirus genomic identity indicated that one common midwife toad virus (CMTV)-like ranavirus strain is emerging in provinces in the north of the Netherlands. Modelling based on the spatiotemporal pattern of spread showed a high probability that this emerging virus will continue to be detected at new sites (the discrete reproductive power of this outbreak is 0.35). Phylogenetically distinct CMTV-like ranaviruses were found in the south of the Netherlands more recently. In addition to showing that CMTV-like ranaviruses threaten wild amphibian populations not only in Spain but also in the Netherlands, the current spread and risk of establishment reiterate that understanding the underlying causes of CMTV-like ranavirus emergence requires international attention

    Spatiotemporal distribution of ranavirus associated amphibian mortality events, the Netherlands, 2011–2014.

    No full text
    <p>(A) Country overview, 2011–2012. (B) Country overview, 2013–2014. (C) Close-up of area around index site, 2011–2014. The green surface contains all sites with confirmed ranavirus-associated mortality events in 2011 (dark green shade), extending southwards in 2012 (light green shade). The yellow surface is the area to the north of the index site where additional events occurred ≤ 20 km from the index site in 2013 (dark shade) and 2014 (light shade). The numbers correspond to the site numbers for sites with confirmed ranavirus presence. ND = Not determined.</p

    Phylogeny of the partially sequenced ranaviruses associated with amphibian mortality events in the Dutch wildlife.

    No full text
    <p>Maximum-likelihood phylogeny of ranaviruses based on concatenated alignments of seven partial gene sequences. The ranavirus samples from the Netherlands cluster in two distinct phylogenetically related groups (NL group I and NL group II) within the CMTV-like ranavirus group, clearly distinct from CMTV from Spain (CMTV-E) and Bosca’s newt virus from Spain (BNV-E). The fully sequenced ranavirus from site no. 35 is indicated with an asterisk (*). The bootstrap support is shown at the nodes. Only values >50% are shown.</p
    corecore