37 research outputs found
A monitoring study confirming the safe use of DuPont Steward insecticide (a.s. indoxacarb) for natural bumblebee populations in flowering apple orchards and recommendations for the use of commercial bumble bee hives in flowering apple and pear orchards tr
contribution to session II
Bumblebees and other bee specie
Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.)
Honeybees (Apis mellifera L.) have great potential for detecting and monitoring environmental pollution, given their wide-ranging foraging behaviour. Previous studies have demonstrated that concentrations of metals in adult honeybees were significantly higher at polluted than at control locations. These studies focused at a limited range of heavy metals and highly contrasting locations, and sampling was rarely repeated over a prolonged period. In our study, the potential of honeybees to detect and monitor metal pollution was further explored by measuring the concentration in adult honeybees of a wide range of trace metals, nine of which were not studied before, at three locations in the Netherlands over a 3-month period. The specific objective of the study was to assess the spatial and temporal variation in concentration in adult honeybees of Al, As, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, V and Zn. In the period of July–September 2006, replicated samples were taken at 2-week intervals from commercial-type beehives. The metal concentration in micrograms per gram honeybee was determined by inductive coupled plasma–atomic emission spectrometry. Significant differences in concentration between sampling dates per location were found for Al, Cd, Co, Cr, Cu, Mn Sr, Ti and V, and significant differences in average concentration between locations were found for Co, Sr and V. The results indicate that honeybees can serve to detect temporal and spatial patterns in environmental metal concentrations, even at relatively low levels of pollution
Semi-automated sequence curation for reliable reference datasets in ITS2 vascular plant DNA (meta-)barcoding
One of the most critical steps for accurate taxonomic identification in DNA (meta)-barcoding is to have an accurate DNA reference sequence dataset for the marker of choice. Therefore, developing such a dataset has been a long-term ambition, especially in the Viridiplantae kingdom. Typically, reference datasets are constructed with sequences downloaded from general public databases, which can carry taxonomic and other relevant errors. Herein, we constructed a curated (i) global dataset, (ii) European crop dataset, and (iii) 27 datasets for the EU countries for the ITS2 barcoding marker of vascular plants. To that end, we first developed a pipeline script that entails (i) an automated curation stage comprising five filters, (ii) manual taxonomic correction for misclassified taxa, and (iii) manual addition of newly sequenced species. The pipeline allows easy updating of the curated datasets. With this approach, 13% of the sequences, corresponding to 7% of species originally imported from GenBank, were discarded. Further, 259 sequences were manually added to the curated global dataset, which now comprises 307,977 sequences of 111,382 plant species.AQ acknowledges the PhD scholarship (2020.05155.BD), funded by the Portuguese Foundation for Science
and Technology (FCT). This work was developed in the framework of INSIGNIA – Environmental monitoring
of pesticide use through honeybees (SANTE/E4/SI2.788418-SI2.788452-INSIGINIA-PP-1-1-2018) and
INSIGNIA-EU - Preparatory action for monitoring of environmental pollution using honey bees (Procurement
procedure ENV/2021/OP/0014 of 28-09-2021). FCT provided financial support by national funds (FCT/MCTES)
to CIMO (UIDB/00690/2020 and UIDP/00690/2020) and SusTEC (LA/P/0007/2021).info:eu-repo/semantics/publishedVersio
Higher TIER bumble bees and solitary bees recommendations for a semi-field experimental design
The publication of the proposed EFSA risk assessment guidance document of plant protection products for pollinators highlighted that there are no study designs for non-Apis pollinators available. Since no official guidelines exist for semi-field testing at present, protocols were proposed by the ICPPR non-Apis working group and two years of ring-testing were conducted in 2016 and 2017 to develop a general test set-up. The ringtest design was based on the draft EFSA guidance document, OEPP/EPPO Guideline No. 170 and results of discussions regarding testing solitary bees and bumble bees during the meetings of the ICPPR non-Apis workgroup. Ring-tests were conducted with two different test organisms, one representative of a social bumble bee species (Bombus terrestris L; Hymenoptera, Apidae) and one representative of a solitary bee species (Osmia bicornis L; Hymenoptera, Megachilidae). The species are common species in Europe, commercially available and widely used for pollination services. Several laboratories participated in the higher-tier ring tests. 15 semi-field tests were conducted with bumble bees and 16 semi-field tests were done with solitary bees in 2016 and 2017. Two treatment groups were always included in the ringtests: an untreated control (water treated) and the treatment with dimethoate as a toxic reference item (optional other i.e. brood-affecting substances fenoxycarb or diflubenzuron). The toxic reference items were chosen based on their mode of action and long term experience in honey bee testing. A summary of the ringtest results will be given and the recommendations for the two semi-field test designs will be presented.The publication of the proposed EFSA risk assessment guidance document of plant protection products for pollinators highlighted that there are no study designs for non-Apis pollinators available. Since no official guidelines exist for semi-field testing at present, protocols were proposed by the ICPPR non-Apis working group and two years of ring-testing were conducted in 2016 and 2017 to develop a general test set-up. The ringtest design was based on the draft EFSA guidance document, OEPP/EPPO Guideline No. 170 and results of discussions regarding testing solitary bees and bumble bees during the meetings of the ICPPR non-Apis workgroup. Ring-tests were conducted with two different test organisms, one representative of a social bumble bee species (Bombus terrestris L; Hymenoptera, Apidae) and one representative of a solitary bee species (Osmia bicornis L; Hymenoptera, Megachilidae). The species are common species in Europe, commercially available and widely used for pollination services. Several laboratories participated in the higher-tier ring tests. 15 semi-field tests were conducted with bumble bees and 16 semi-field tests were done with solitary bees in 2016 and 2017. Two treatment groups were always included in the ringtests: an untreated control (water treated) and the treatment with dimethoate as a toxic reference item (optional other i.e. brood-affecting substances fenoxycarb or diflubenzuron). The toxic reference items were chosen based on their mode of action and long term experience in honey bee testing. A summary of the ringtest results will be given and the recommendations for the two semi-field test designs will be presented
Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation
Background: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings: Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance: This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter
Winter survival as a function of bee survival in November 2005 (B) and 2006 (B).
<p>Fraction of frames occupied with bees in a colony in April in relation to bee survival at 100 days for the cohorts marked in November 2005 (A) and November 2006 (B). We used the data for November as an example, the relationship is similar for all days of marking, the trend only showed lower bee survival for cohorts marked earlier. Inserts show the differences in the fraction of frames occupied between for the different treatments (timing of acaricide application, NT = not treated). Letters indicate significant differences.</p
Bee survival as a function of time and treatment in 2005/2006 (A) and 2006/2007 (B).
<p>Bee survival (fraction d100) was the predicted fraction of bees that was still alive at the age of 100 days, and calculated using a Cox Proportional Hazards Model. Time was the marking date of the cohort (scatterplot). Different months of acaricide application show the treatments, where letters denote significant differences (over all marking dates).</p
Mean number of capped brood cells in 2005/2006 (A) and 2006/2007 (B).
<p>Colonies were treated with Thymovar® in July (white bars), August (grey bars), September (dark grey bars), or not treated at all (black bars). Number of capped brood cells between December 2005 and March 2006 were not measured due to cold winter temperatures. Letters show significant differences between months.</p