407 research outputs found
Osmotic Pressure of Solutions Containing Flexible Polymers Subject to an Annealed Molecular Weight Distribution
The osmotic pressure in equilibrium polymers (EP) in good solvent is
investigated by means of a three dimensional off-lattice Monte Carlo
simulation. Our results compare well with real space renormalisation group
theory and the osmotic compressibility K \propto \phi \upd \phi/\upd P from
recent light scattering study of systems of long worm-like micelles. We confirm
the scaling predictions for EP based on traditional physics of quenched
monodisperse polymers in the dilute and semidilute limit. Specifically, we find
and, hence, in the semidilute
regime --- in agreement with both theory and experiment. At higher
concentrations where the semidilute blobs become too small and hard-core
interactions and packing effects become dominant, a much stronger increase %
\log(P/\phi)\approx \log(\Nav^2/\phi) \propto \phi is evidenced and,
consequently, the compressibility decreases much more rapidly with than
predicted from semidilute polymer theory, but again in agreement with
experiment.Comment: 7 pages, 4 figures, LATE
Формування теоретичної моделі геополітичного дискурсу у вітчизняній політичній думці кінця ХХ – початку ХХІ століття
У статті висвітлюються питання щодо започаткування новітньої дослідницької традиції геополітичного дискурсу у проблематиці вітчизняної політичної думки ХХ – початку ХХІ століття. Зазначено позиції провідних вітчизняних вчених щодо формування емпіричного та ідейно-теоретичного підґрунтя для утвердження цієї традиції політичного дослідження.The article considers the questions of the becoming of a new research tradition of
geopolitical discourse in the topic of native political thought of the 20-th – the beginning of the 21-st century. The views of leading home scientists about the development of empirical, ideological and theoretical basis for the maintenance of this tradition of political research are pointed out
Computational confirmation of scaling predictions for equilibrium polymers
We report the results of extensive Dynamic Monte Carlo simulations of systems
of self-assembled Equilibrium Polymers without rings in good solvent.
Confirming recent theoretical predictions, the mean-chain length is found to
scale as \Lav = \Lstar (\phi/\phistar)^\alpha \propto \phi^\alpha \exp(\delta
E) with exponents and in the dilute and
semi-dilute limits respectively. The average size of the micelles, as measured
by the end-to-end distance and the radius of gyration, follows a very similar
crossover scaling to that of conventional quenched polymer chains. In the
semi-dilute regime, the chain size distribution is found to be exponential,
crossing over to a Schultz-Zimm type distribution in the dilute limit. The very
large size of our simulations (which involve mean chain lengths up to 5000,
even at high polymer densities) allows also an accurate determination of the
self-avoiding walk susceptibility exponent .Comment: 6 pages, 4 figures, LATE
End-fire versus side-fire:a randomized controlled study of transrectal ultrasound guided biopsies for prostate cancer detection
Objectives: To compare prostate cancer detection rates between end-fire and side-fire ultrasound guided prostate biopsy techniques. Methods: A prospective randomized controlled trial was performed in patients who underwent prostate biopsy between 2009 and 2014. Patients were randomly assigned to the end-fire or side fire biopsy groups and underwent transrectal ultrasound guided prostate biopsy. The overall prostate cancer detection rate was compared between the two probe configurations. Trial was registered at Clinical Trials.gov with identifier: NCT00851292. Results: A total of 730 patients were included and randomized, 371 patients underwent prostate biopsy with side-fire probe and 359 patients with the end-fire probe. Prostate cancer detection rates were 52.4% in the end fire group and 45.6% in the side fire group (p = .066). Conclusions: No significant difference was found in detection rate of prostate cancer between the end-fire and side-fire probe in transrectal ultrasound guided prostate biopsy, neither for detection rate of prostate cancer in the apex
Parity Breaking in Nematic Tactoids
We theoretically investigate under what conditions the director field in a
spindle-shaped nematic droplet or tactoid obtains a twisted, parity-broken
structure. By minimizing the sum of the bulk elastic and surface energies, we
show that a twisted director field is stable if the twist and bend elastic
constants are small enough compared to the splay elastic constant, but only if
the droplet volume is larger than some minimum value. We furthermore show that
the transition from an untwisted to a twisted director-field structure is a
sharp function of the various control parameters. We predict that suspensions
of rigid, rod-like particles cannot support droplets with a parity broken
structure, whereas they could possibly occur in those of semi-flexible,
worm-like particles.Comment: 20 pages, 9 figures, submitted to Journal of Physics: Condensed
Matte
Micellization of Sliding Polymer Surfactants
Following up a recent paper on grafted sliding polymer layers (Macromolecules
2005, 38, 1434-1441), we investigated the influence of the sliding degree of
freedom on the self-assembly of sliding polymeric surfactants that can be
obtained by complexation of polymers with cyclodextrins. In contrast to the
micelles of quenched block copolymer surfactants, the free energy of micelles
of sliding surfactants can have two minima: the first corresponding to small
micelles with symmetric arm lengths, and the second corresponding to large
micelles with asymmetric arm lengths. The relative sizes and concentrations of
small and large micelles in the solution depend on the molecular parameters of
the system. The appearance of small micelles drastically reduces the kinetic
barrier signifying the fast formation of equilibrium micelles.Comment: Submitted to Macromolecule
Entropy-induced smectic phases in rod-coil copolymers
We present a self-consistent field theory (SCFT) of semiflexible (wormlike)
diblock copolymers, each consisting of a rigid and a flexible part. The
segments of the polymers are otherwise identical, in particular with regard to
their interactions, which are taken to be of an Onsager excluded-volume type.
The theory is developed in a general three-dimensional form, as well as in a
simpler one-dimensional version. Using the latter, we demonstrate that the
theory predicts the formation of a partial-bilayer smectic-A phase in this
system, as shown by profiles of the local density and orientational
distribution functions. The phase diagram of the system, which includes the
isotropic and nematic phases, is obtained in terms of the mean density and
rigid-rod fraction of each molecule. The nematic-smectic transition is found to
be second order. Since the smectic phase is induced solely by the difference in
the rigidities, the onset of smectic ordering is shown to be an entropic effect
and therefore does not have to rely on additional Flory-Huggins-type repulsive
interactions between unlike chain segments. These findings are compared with
other recent SCFT studies of similar copolymer models and with computer
simulations of several molecular models.Comment: 13 pages, 8 figure
Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction measurements
We use an ensemble Kalman filter (EnKF), together with the GEOS-Chem chemistry transport model, to estimate regional monthly methane (CH<sub>4</sub>) fluxes for the period June 2009–December 2010 using proxy dry-air column-averaged mole fractions of methane (XCH<sub>4</sub>) from GOSAT (Greenhouse gases Observing SATellite) and/or NOAA ESRL (Earth System Research Laboratory) and CSIRO GASLAB (Global Atmospheric Sampling Laboratory) CH<sub>4</sub> surface mole fraction measurements. Global posterior estimates using GOSAT and/or surface measurements are between 510–516 Tg yr<sup>−1</sup>, which is less than, though within the uncertainty of, the prior global flux of 529 ± 25 Tg yr<sup>−1</sup>. We find larger differences between regional prior and posterior fluxes, with the largest changes in monthly emissions (75 Tg yr<sup>−1</sup>) occurring in Temperate Eurasia. In non-boreal regions the error reductions for inversions using the GOSAT data are at least three times larger (up to 45%) than if only surface data are assimilated, a reflection of the greater spatial coverage of GOSAT, with the two exceptions of latitudes >60° associated with a data filter and over Europe where the surface network adequately describes fluxes on our model spatial and temporal grid. We use CarbonTracker and GEOS-Chem XCO<sub>2</sub> model output to investigate model error on quantifying proxy GOSAT XCH<sub>4</sub> (involving model XCO<sub>2</sub>) and inferring methane flux estimates from surface mole fraction data and show similar resulting fluxes, with differences reflecting initial differences in the proxy value. Using a series of observing system simulation experiments (OSSEs) we characterize the posterior flux error introduced by non-uniform atmospheric sampling by GOSAT. We show that clear-sky measurements can theoretically reproduce fluxes within 10% of true values, with the exception of tropical regions where, due to a large seasonal cycle in the number of measurements because of clouds and aerosols, fluxes are within 15% of true fluxes. We evaluate our posterior methane fluxes by incorporating them into GEOS-Chem and sampling the model at the location and time of surface CH<sub>4</sub> measurements from the AGAGE (Advanced Global Atmospheric Gases Experiment) network and column XCH<sub>4</sub> measurements from TCCON (Total Carbon Column Observing Network). The posterior fluxes modestly improve the model agreement with AGAGE and TCCON data relative to prior fluxes, with the correlation coefficients (<i>r</i><sup>2</sup>) increasing by a mean of 0.04 (range: −0.17 to 0.23) and the biases decreasing by a mean of 0.4 ppb (range: −8.9 to 8.4 ppb)
- …