research

Computational confirmation of scaling predictions for equilibrium polymers

Abstract

We report the results of extensive Dynamic Monte Carlo simulations of systems of self-assembled Equilibrium Polymers without rings in good solvent. Confirming recent theoretical predictions, the mean-chain length is found to scale as \Lav = \Lstar (\phi/\phistar)^\alpha \propto \phi^\alpha \exp(\delta E) with exponents αd=δd=1/(1+γ)0.46\alpha_d=\delta_d=1/(1+\gamma) \approx 0.46 and αs=[1+(γ1)/(νd1)]/20.60,δs=1/2\alpha_s = [1+(\gamma-1)/(\nu d -1)]/2 \approx 0.60, \delta_s=1/2 in the dilute and semi-dilute limits respectively. The average size of the micelles, as measured by the end-to-end distance and the radius of gyration, follows a very similar crossover scaling to that of conventional quenched polymer chains. In the semi-dilute regime, the chain size distribution is found to be exponential, crossing over to a Schultz-Zimm type distribution in the dilute limit. The very large size of our simulations (which involve mean chain lengths up to 5000, even at high polymer densities) allows also an accurate determination of the self-avoiding walk susceptibility exponent γ=1.165±0.01\gamma = 1.165 \pm 0.01.Comment: 6 pages, 4 figures, LATE

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020