145 research outputs found

    Genetically Determined High Levels of Iron Parameters Are Protective for Coronary Artery Disease

    Get PDF
    The observation that premenopausal women have a relatively low incidence of heart disease led in the nineteen eighties to the hypothesis that iron deficiency protects against heart diseases. These early observations were followed-up by conflicting epidemiological data. To confer causal relationships from epidemiological data is challenging as results can be influenced by residual confounding or reverse causation. For bias reduction, an alternative analysis strategy utilizing single-nucleotide polymorphisms (SNPs) as instrumental variables (Mendelian Randomization) has been developed. A recent study using 3 iron status associated SNPs suggested a protective effect of a higher iron status on the development of CAD.3 With a larger set of SNPs covering different components of iron metabolism, we aimed to provide a reliable answer to this lingering question

    Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment

    Get PDF
    The robustness of reverse osmosis (RO) against polar organic micropollutants (MPs) was investigated in pilot-scale drinking water treatment. Experiments were carried in hypoxic conditions to treat a raw anaerobic riverbank filtrate spiked with a mixture of thirty model compounds. The chemicals were selected from scientific literature data based on their relevance for the quality of freshwater systems, RO permeate and drinking water. MPs passage and the influence of permeate flux were evaluated with a typical low-pressure RO membrane and quantified by liquid chromatography coupled to high-resolution mass spectrometry. A strong inverse correlation between size and passage of neutral hydrophilic compounds was observed. This correlation was weaker for moderately hydrophobic MPs. Anionic MPs displayed nearly no passage due to electrostatic repulsion with the negatively charged membrane surface, whereas breakthrough of small cationic MPs could be observed. The passage figures observed for the investigated set of MPs ranged from less than 1%-25%. Statistical analysis was performed to evaluate the relationship between physicochemical properties and passage. The effects of permeate flux were more pronounced for small neutral MPs, which displayed a higher passage after a pressure drop

    An Erythropoietin-Independent Mechanism of Erythrocytic Precursor Proliferation Underlies Hypoxia Tolerance in Sea Nomads

    Get PDF
    The Bajau Sea Nomads were recently demonstrated to have evolved larger spleens as an adaptation to millennia of a marine foraging lifestyle. The large-spleen phenotype appears to derive from increases in thyroid hormone (TH) production as a result of reduced expression of phosphodiesterase 10A (PDE10A), though the exact mechanism remains unknown. Through pharmacological inhibition of PDE10A using the selective inhibitor MP-10 in mice, we were able to mimic the Bajau adaptation and show that treated mice had significantly larger spleens than control animals. This difference appears connected to an excess of early stage erythrocytes and an apparent increase in red blood cell (RBC) precursor proliferation in response to increased TH. However, we determined that the stimulation of RBC production in the mouse model via TH is Erythropoietin (EPO)-independent, unlike in the altitude (chronic hypoxemia) response. We confirmed this using human GWAS data; although the Bajau PDE10A variants are significantly associated with increased TH levels and RBC count, they are not associated with EPO levels, nor are other strongly thyroid-associated SNPs. We therefore suggest that an EPO-independent mechanism of stimulating RBC precursor proliferation via TH upregulation underlies the increase in spleen size observed in Sea Nomad populations

    The impact of cannabidiol treatment on resting state functional connectivity, prefrontal metabolite levels and reward processing in recent-onset patients with a psychotic disorder

    Get PDF
    The first clinical trials with cannabidiol (CBD) as treatment for psychotic disorders have shown its potential as an effective and well-tolerated antipsychotic agent. However, the neurobiological mechanisms underlying the antipsychotic profile of CBD are currently unclear. Here we investigated the impact of 28-day adjunctive CBD or placebo treatment (600 mg daily) on brain function and metabolism in 31 stable recent-onset psychosis patients (&lt;5 years after diagnosis). Before and after treatment, patients underwent a Magnetic Resonance Imaging (MRI) session including resting state functional MRI, proton Magnetic Resonance Spectroscopy (1H-MRS) and functional MRI during reward processing. Symptomatology and cognitive functioning were also assessed. CBD treatment significantly changed functional connectivity in the default mode network (DMN; time × treatment interaction p = 0.037), with increased connectivity in the CBD (from 0.59 ± 0.39 to 0.80 ± 0.32) and reduced connectivity in the placebo group (from 0.77 ± 0.37 to 0.62 ± 0.33). Although there were no significant treatment effects on prefrontal metabolite concentrations, we showed that decreased positive symptom severity over time was associated with both diminishing glutamate (p = 0.029) and N-acetyl-aspartate (NAA; neuronal integrity marker) levels (p = 0.019) in the CBD, but not the placebo group. CBD treatment did not have an impact on brain activity patterns during reward anticipation and receipt or functional connectivity in executive and salience networks. Our results show that adjunctive CBD treatment of recent-onset psychosis patients induced changes in DMN functional connectivity, but not prefrontal metabolite concentrations or brain activity during reward processing. These findings suggest that DMN connectivity alteration may be involved in the therapeutic effects of CBD.</p

    The impact of cannabidiol treatment on resting state functional connectivity, prefrontal metabolite levels and reward processing in recent-onset patients with a psychotic disorder

    Full text link
    The first clinical trials with cannabidiol (CBD) as treatment for psychotic disorders have shown its potential as an effective and well-tolerated antipsychotic agent. However, the neurobiological mechanisms underlying the antipsychotic profile of CBD are currently unclear. Here we investigated the impact of 28-day adjunctive CBD or placebo treatment (600 mg daily) on brain function and metabolism in 31 stable recent-onset psychosis patients (<5 years after diagnosis). Before and after treatment, patients underwent a Magnetic Resonance Imaging (MRI) session including resting state functional MRI, proton Magnetic Resonance Spectroscopy (1^{1}H-MRS) and functional MRI during reward processing. Symptomatology and cognitive functioning were also assessed. CBD treatment significantly changed functional connectivity in the default mode network (DMN; time × treatment interaction p = 0.037), with increased connectivity in the CBD (from 0.59 ± 0.39 to 0.80 ± 0.32) and reduced connectivity in the placebo group (from 0.77 ± 0.37 to 0.62 ± 0.33). Although there were no significant treatment effects on prefrontal metabolite concentrations, we showed that decreased positive symptom severity over time was associated with both diminishing glutamate (p = 0.029) and N-acetyl-aspartate (NAA; neuronal integrity marker) levels (p = 0.019) in the CBD, but not the placebo group. CBD treatment did not have an impact on brain activity patterns during reward anticipation and receipt or functional connectivity in executive and salience networks. Our results show that adjunctive CBD treatment of recent-onset psychosis patients induced changes in DMN functional connectivity, but not prefrontal metabolite concentrations or brain activity during reward processing. These findings suggest that DMN connectivity alteration may be involved in the therapeutic effects of CBD

    Depression and anxiety in glioma patients

    Full text link
    Glioma patients carry the burden of having both a progressive neurological disease and cancer, and may face a variety of symptoms, including depression and anxiety. These symptoms are highly prevalent in glioma patients (median point prevalence ranging from 16-41% for depression and 24-48% for anxiety when assessed by self-report questionnaires) and have a major impact on health-related quality of life and even overall survival time. A worse overall survival time for glioma patients with depressive symptoms might be due to tumor progression and/or its supportive treatment causing depressive symptoms, an increased risk of suicide or other (unknown) factors. Much is still unclear about the etiology of depressive and anxiety symptoms in glioma. These psychiatric symptoms often find their cause in a combination of neurophysiological and psychological factors, such as the tumor and/or its treatment. Although these patients have a particular idiosyncrasy, standard treatment guidelines for depressive and anxiety disorders apply, generally recommending psychological and pharmacological treatment. Only a few nonpharmacological trials have been conducted evaluating the efficacy of psychological treatments (eg, a reminiscence therapy-based care program) in this population, which significantly reduced depressive and anxiety symptoms. No pharmacological trials have been conducted in glioma patients specifically. More well-designed trials evaluating the efficacy of nonpharmacological treatments for depressive and anxiety disorders in glioma are urgently needed to successfully treat psychiatric symptoms in brain tumor patients and to improve (health-related) quality of life

    Observation of open scattering channels

    Get PDF
    The existence of fully transmissive eigenchannels ("open channels") in a random scattering medium is a counterintuitive and unresolved prediction of random matrix theory. The smoking gun of such open channels, namely a bimodal distribution of the transmission efficiencies of the scattering channels, has so far eluded experimental observation. We observe an experimental distribution of transmission efficiencies that obeys the predicted bimodal Dorokhov-Mello-Pereyra-Kumar distribution. Thereby we show the existence of open channels in a linear optical scattering system. The characterization of the scattering system is carried out by a quantum-optical readout method. We find that missing a single channel in the measurement already prevents detection of the open channels, illustrating why their observation has proven so elusive until now. Our work confirms a long-standing prediction of random matrix theory underlying wave transport through disordered systems.Comment: 9 pages including methods and supplementary materials. 3 figure

    Genetic Risk and Atrial Fibrillation in Patients with Heart Failure

    Get PDF
    Aims: To study the association between an atrial fibrillation (AF) genetic risk score with prevalent AF and all-cause mortality in patients with heart failure. Methods and results: An AF genetic risk score was calculated in 3759 European ancestry individuals (1783 with sinus rhythm, 1976 with AF) from the BIOlogy Study to TAilored Treatment in Chronic Heart Failure (BIOSTAT-CHF) by summing 97 single nucleotide polymorphism (SNP) alleles (ranging from 0–2) weighted by the natural logarithm of the relative SNP risk from the latest AF genome-wide association study. Further, we assessed AF risk variance explained by additive SNP variation, and performance of clinical or genetic risk factors, and the combination in classifying AF prevalence. AF was classified as AF or atrial flutter (AFL) at baseline electrocardiogram and/or a history of AF or AFL. The genetic risk score was associated with AF after multivariable adjustment. Odds ratio for AF prevalence per 1-unit increase genetic risk score was 2.12 (95% confidence interval 1.84–2.45, P = 2.15 × 10−24) in the total cohort, 2.08 (1.72–2.50, P = 1.30 × 10−14) in heart failure with reduced ejection fraction (HFrEF) and 2.02 (1.37–2.99, P = 4.37 × 10−4) in heart failure with preserved ejection fraction (HFpEF). AF-associated loci explained 22.9% of overall AF SNP heritability. Addition of the genetic risk score to clinical risk factors increased the C-index by 2.2% to 0.721. Conclusions: The AF genetic risk score was associated with increased AF prevalence in HFrEF and HFpEF. Genetic variation accounted for 22.9% of overall AF SNP heritability. Addition of genetic risk to clinical risk improved model performance in classifying AF prevalence

    The Development and Subsequent Elimination of Aberrant Peripheral Axon Projections in Semaphorin3A Null Mutant Mice

    Get PDF
    AbstractSemaphorin3A (previously known as Semaphorin III, Semaphorin D, or collapsin-1) is a member of the semaphorin gene family, many of which have been shown to guide axons during nervous system development. Semaphorin3A has been demonstrated to be a diffusible chemorepulsive molecule for axons of selected neuronal populations in vitro. Analysis of embryogenesis in two independent lines of Semaphorin3A knockout mice support the hypothesis that this molecule is an important guidance signal for neurons of the peripheral nervous system (M. Taniguchi et al., 1997, Neuron 19, 519–530; E. Ulupinar et al., 1999, Mol. Cell. Neurosci. 13, 281–292). Surprisingly, newborn Semaphorin3A null mutant mice exhibit no significant abnormalities (O. Behar et al., 1996, Nature 383, 525–528). In this study we have tested the hypothesis that guidance abnormalities that occurred during early stages of Semaphorin3A null mice development are corrected later in development. We have found that the extensive abnormalities formed during early developmental stages in the peripheral nervous system are largely eliminated by embryonic day 15.5. We demonstrate further that at least in one distinct anatomical location these abnormalities are mainly the result of aberrant projections. In conclusion, these findings suggest the existence of correction mechanisms that eliminate most sensory axon pathfinding errors early in development
    • …
    corecore