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ABSTRACT

The existence of fully transmissive eigenchannels (’open channels’) in a random scattering medium is a counterintuitive and
unresolved prediction of random matrix theory. The smoking gun of such open channels, namely a bimodal distribution of the
transmission efficiencies of the scattering channels, has so far eluded experimental observation. We observe an experimental
distribution of transmission efficiencies that obeys the predicted bimodal Dorokhov-Mello-Pereyra-Kumar distribution. Thereby
we show the existence of open channels in a linear optical scattering system. The characterization of the scattering system
is carried out by a quantum-optical readout method. We find that missing a single channel in the measurement already
prevents detection of the open channels, illustrating why their observation has proven so elusive until now. Our work confirms a
long-standing prediction of random matrix theory underlying wave transport through disordered systems.

Wave transport through scattering media is ubiquitous in na-
ture and technology. Its physics is essential in electron trans-
port in quantum dots and nanowires1, 2, conductance fluctua-
tions in electron transport3, optical transmission in multimode
fibers4, the theory of acoustic waves5–7, and fluctuations in
light transport8–10. An understanding of scattering physics, to-
gether with adaptive optical technologies, allows us to exploit,
scattering for various applications such as wavefront shap-
ing11, physical unclonable functions12–14, communication15,
and imaging16.

Open channels have a pivotal role in transport through
disordered systems17. These open channels are eigenmodes
of the transmission matrix with full transmission through an
otherwise opaque medium18, 19. It is not just the case that
open channels can exist - one can easily imagine encountering
a fully transmissive mode with an exponentially small proba-
bility -, but rather that transport is dominated by fully closed
and fully open channels. This is because the distribution of
transmission eigenvalues (more precisely, that of the singular-
values) is bimodal, with one peak at low transmission values
and one peak at high values, as indicated in Fig. 1a). This
bimodal distribution is considered to be one of the most spec-
tacular predictions of random matrix theory17, and remains as
yet unconfirmed in direct experiments.

Technologically, open channels underlie many of the ap-
plications of scattering systems. For example, it is possible
to increase the transmission to (near) unity in a disordered
medium by coupling the input light into one of the open chan-
nels. This allows for lossless transmission. One can take
this one step further by using a spatial light modulator to
’undo’ the scattering and create a focus behind the scattering
sample11. As the transmission matrix is not unitary, simply

applying some unitary matrix with the spatial light modulator
does not guarantee a high transmission; a high transmission
is only possible when open channels exist20, 21. Furthermore,
conductance fluctuations in optical or electronic transport in-
tricately depend on the existence of the bimodal distribution
and its higher-order moments3, 8.

Despite the central role of open channels in transport
through disordered media, only indirect signatures for the
existence of open channels have been provided7, 22–24. The
limiting factor in measuring the bimodal singular values dis-
tribution in scattering media is the difficulty to individually
probe and measure all of the modes of the system20, 21, 25. This
can be understood by realizing that long-range mesoscopic
correlations at the output build-up as the light gets randomly
scattered and interferes with itself. Missing modes imply los-
ing this long-range order, which ultimately leads to uncorre-
lated Marcenko-Pastur (MP) statistics. The open channels are
only observable when the number of controlled modes must
be >≈ 95% of the total number of channels21, 26. Despite con-
siderable effort, experimental access to a sufficient fraction
of modes has so far not been achieved. Reimposing unitarity
on only the observed modes amounts to the assertion that the
observed set of modes is decoupled from all others, which is
unjustified in the experimental situation of a scattering sys-
tem. Consequently, the second peak in the singular-value
distribution has not unambiguously been observed yet.

In this work, we report experimental proof of the existence
of open channels from a telltale high-transmission peak in the
singular-value distribution (SVD). We do so by mapping a
scattering medium with exactly 6 input and 6 output channels
to a 12×12 scattering matrix implemented on a linear inte-
grated optical processor. We experimentally characterise the
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Figure 1. Mapping a scattering system with open channels.a) The bimodal distribution of the singular values τ of the
transmission matrix of a loss-free scattering system is described by the DMPK distribution. The peak near τ2 = 0 (left, on red
background) is caused by the closed channels and the peak near τ2 = 1 (right, green background) is caused by the open
channels. The inset shows how light incident on a scattering medium tends to be fully reflected (red), but some eigenmodes
have a near-unity transmission (green). This system can be completely modeled by a scattering matrix S that we simulate on a
programmable optical network. b) A schematic of the programmable optical network with 12 input and output modes that
implements the scattering matrix S. The top 6 output modes (red) correspond to the reflection modes of S and the bottom
(green) ones correspond to the transmission modes. On the bottom, a unit-cell of the network is shown. Each cell consists of
two 50:50 splitters and two thermo-optical elements for tunability.

full transmission matrix using two-photon interference as a
robust readout technique. From this, we observe the bimodal
transmission singular value distribution. Profiting from the su-
perb access and control over all modes given by an integrated
photonic processor, we observe that open channels are only
visible in the experimental eigenvalue distribution when all
modes are considered.

The natural mathematical framework describing this scat-
tering physics is random matrix theory (RMT). RMT replaces
system-specific details with a scattering matrix S

S =

[
R T
T ′ R′

]
, (1)

where the submatrices T and R are the transmission and re-
flection matrices, respectively. This scattering matrix contains
the appropriate statistical properties of the system, while re-
maining agnostic to the microscopic details of the scatterer.
This allows to study their physics on any system that captures
these statistics.

We simulate our diffusive system on such a state-of-the-
art 12-mode one-way integrated photonic processor, shown in
the inset of Fig. 1a) and schematically in Fig. 1b)27. On this
network, an entire scattering matrix S is implemented, where
the first six output modes are treated as ’reflection’ modes and
output modes 7−12 as transmission modes.

Characterizing such a matrix only results in six singular
values, which is not sufficient to build up the entire bimodal
distribution. However, a major advantage of this network is

that it is fully reconfigurable. For this experiment, we imple-
mented a total of 200 scattering matrices. The scattering ma-
trices are generated by a numerical simulation of a 12-mode
scattering system with appropriate settings. The simulation is
based on the method of28, as described in more detail in the
Supplemental materials.

Characterisation of the matrices on the network is per-
formed by sending pairs of single photons into the network
and sampling their output distribution with a battery of su-
perconducting nanowire single-photon detectors (SNSPDs).
Although it would in principle be possible to characterise
the matrix with classical coherent light in an interferometri-
cally stable setup, doing the readout with single photons has
the advantage that we do not need interferometric stability
of the fibers connecting the PIC network with the outside
world29, 30, a fact which arises from the phase-insensitivity of
the single-photon quantum state. Hence our readout method is
motivated by the quantum readout being more practical than
the equivalent classical method.

The matrix amplitudes are sampled by sequentially inject-
ing single photons into each input mode and measuring the
output distribution. The photon flux is corrected for known ex-
perimental fluctuations such as the variations of pump power
over time, relative detector efficiencies, and output losses of
the chip. The phases of the matrix elements are characterized
by sequentially measuring two-photon interference in the net-
work for a given set of combinations of two input and two
output modes29..
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Figure 2. Open channels. The singular values distributions of the transmission matrix for two data sets and three different
methods of processing. The left three panels correspond with the actual experimental data and the right column with data from
random Gaussian matrices. The top row (a and e) shows the raw data. The middle panels (b and e) show that the bimodal
distribution can be recovered by embedding the matrices, but only for the experimental data. The bottom panels (c and f) show
that the unitarization of the data always results in a bimodal distribution. The unitarized Gaussian matrices lead to a symmetric
distribution, whereas the unitarized experimental data show the asymmetric DMPK distribution.

To reduce experimental measurement time, we only char-
acterized the phases of the transmission matrix, not of the
reflection matrix. The matrix amplitudes are measured for the
entire S matrix so that the 1-photon output distribution can
be normalised. See Methods for the details on the chip and
setup.

Open Channels. Figure 2a) shows the experimentally ob-
tained singular-value distribution of the transmission matrix.
The shoulder near the singular value τ2 = 1 in Fig. 2a) is
indicative of the expected peak, this by itself is not enough to
claim observation of open channels. Ideally, energy conser-
vation results in singular values between 0 and 1. However,
experimental noise resulted in a non-normalised S matrix. The
intensities of the rows sum up to 1.00± 0.053, whereas the
columns sum up to exactly 1 due to the normalisation of the
measured output distribution.

The open channels are recovered in Fig. 2b) using a no-
gain assumption by embedding the transmission matrix in a
larger, unitary matrix. This embedding matrix can physically
be understood as a matrix that also incorporates the losses
and coupling to the environment31. We can then apply the
no-gain assumption to this larger embedding matrix and again
extract the new transmission matrix T . More information
on the embedding method can be found in the Supplemental
Materials.

The singular value distribution now has a large and rel-

atively broad peak at τ2 = 0 and a smaller peak at τ2 = 1
indicating the open channels. Furthermore, the distribution
follows the ideal DMPK curve indicated by the red, dashed
line32

ρ(T ) = A
g

2T
√

1−T
, (2)

where A is a zero-free-parameter scaling factor that converts
the probability density function to counts. The extracted av-
erage transmission 〈T 〉= 31% = l∗

L is close to the expected
transmission (37%). The value of the average transmission
indicates that the system is approximately in the diffusive
regime as l∗ < L, where l∗ is the transport mean free path33

and L the characteristic system size. The average dimension-
less conductance g = ∑i τ2

i = 1.9±0.5, where the uncertainty
indicates the standard deviation over all 200 independent con-
ductance values.

Another data processing option is to impose unitarity, or
energy conservation on the experimentally reconstructed scat-
tering matrices. This is shown in Fig. 2c). This panel shows
that the bimodal behaviour with the open channels is again
recovered.

It is tempting to simply unitarize the experimental scat-
tering matrix to mitigate the noise. However, because the
essence of observing open channels is to not miss any modes,
applying unitarization to a noisy scattering matrix amounts
to imposing the desired solution of the data as it artificially
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Figure 3. Mode Filtering. The singular value distribution of the transmission matrix for the embedded matrices. Each panel
corresponds with a different number of ’observed’ modes. The observed distributions match the (zero-free-parameter)
predictions from Goetschy and Stone20 well, as indicated by the red dashed lines. The insert in the last panel shows the
observation and theory predictions for the situation where the control over the input channels is not reduced, a situation in
which the (non-square) transmission matrix starts asymptotically resembling a random matrix.

imposes (long-range) correlations in the transmission matrix.
However, these new correlations do no longer correspond
with a DMPK system, but with that of a chaotic cavity34. To
emphasise this effect, we will compare our data analysis pro-
cedure of our data with that of artificial data, generated by
computer from random complex Gaussian matrices with the
same mean and variance as observed in our experimental data.
This artificial data is shown in Fig. 2d).

Figure 3e) shows the singular value distribution of the
random Gaussian data after applying the same embedding
procedure of Fig. 2b). The high peak at τ2 = 1 almost reaches
200 and is the result of the renormalization of almost all 200
Gaussian matrices. Despite the presence of the high peak at
τ2 = 1, the distribution still clearly does not follow the one
expected from DMPK statistics, which proves that it is possi-
ble to differentiate between actual and random data when the
embedding procedure is used. This highlights the robustness
of our data processing.

Finally, Fig. 2f) confirms the insight that the unitarization
of random Gaussian matrices indeed results in a bimodal dis-
tribution of the singular values. The resulting distribution has
lost its asymmetry, but this subtlety is eluded in experiments
with limited data to sample the distribution.

Mode filtering. The observation of open channels in Fig.
2 is only possible because of the complete control over the
number of modes. Missing out even one mode is already
sufficient to hide the open channels20. Figure 3b-f) shows

that the correlations inside the transmission matrix disappear
when the fraction of observed modes at both the input and
the output is decreased. The resulting filtered distributions
match the predictions of Goetschy and Stone20, which are
indicated by the red dashed lines. This emphasizes the de-
manding restriction that almost all modes must be included in
measurement in order to observe the open channels.

When the fraction of either controlled input or output
modes is decreased, then the singular values will become
uncorrelated and the open channels again disappear. The
singular-value distribution will asymptotically follow the
Marcenko-Pastur (MP) law since this describes the singu-
lar values of random rectangular Gaussian matrices26. The
inset in the bottom right panel of Fig. 3 shows the observed
distribution associated with the 1× 6 rectangular matrices.
The Goetschy-Stone prediction is drawn in red for reference.
The distribution already shows a maximum at intermediate
singular values, a key characteristic of the MP distribution.

Discusssion In summary, we have successfully solved a
long-standing problem by showing experimental proof of the
bimodal behaviour of the transmission singular values of scat-
tering systems. This was enabled by having access to all input
and output modes of our system. The singular value distri-
butions with a reduced number of modes follow the predic-
tions of Goetschy and Stone20 with a near-perfect quantitative
agreement. This confirms the long-standing hypothesis that
the open channels can only be recovered when all modes can
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experimentally be accessed. Our work fits in a trend of us-
ing well-defined photonic systems to investigate scattering
physics35–38. Our large, low loss and fully tunable processor
can be used to study, for example, multi-photon interference
effects in disordered systems, universal conductance fluctu-
ations, or Anderson localisation17. Another future direction
could be to use recirculating mesh design, which allows for
a more natural correspondence to the physical scattering sys-
tems.
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1 Methods
The setup, shown in Fig. 4, generates pairs of photons in a
Type-II degenerate spontaneous parametric downconversion
(SPDC) source with a 2mm periodically poled potassium ti-
tanyl phosphate (ppKTP) crystal. This crystal is pumped by a
femtosecond mode-locked Ti:Sapphire laser (Tsunami, Spec-
tra Physics) which emits light at 775nm and has a linewidth of
5.5nm. The generated photons are separated by a polarizing
beam splitter and then injected into a polarization-maintaining
fiber which routes these photons to the Si3N4 integrated pho-
tonic network (Quix Quantum BV). One of the fiber couplers
is placed on a linear stage (SLC-2475, Smaract GmbH) to
achieve temporal overlap of the photons inside the chip. The
optical chip consists of 12 input and 12 output modes and is
fully tunable27. Once the photons have propagated through the
chip, they are routed towards the superconducting nanowire
single-photon detectors (SNSPD) (Photon Spot). A time tag-
ger (Time tagger ultra, Swabian Instruments) is used to read
out the single clicks of the detectors and trigger photodiode
(TDA 200, PicoQuant) and their coincidences. The laser’s
output power is constantly monitored with a calibrated photo-
diode.

The single-photon source is pumped with 50mW, which
results in a photon pair rate of about 210 kHz. The heralding
efficiency, i.e. the probability of detecting the second pho-
ton when the first is detected, is typically around 45%. The
photons are 93% indistinguishable. The detector dark counts
are suppressed with the trigger photodiode to an average of
3.1±0.8Hz.

The integrated photonic chip is a Si3N4 netwerk by Quix
Quantum. The optical chip consists of 12 input and 12 output
modes with a Clements-type network, linking all input and out-
put modes with each other39. The matrices are implemented
with an average fidelity of F = 1

n Tr(UtU∗e ) = 0.69±0.07.
The losses in the chip are low (<0.1 dB/cm)40 and domi-

nated by the fiber-to-chip connections which are around 20%
per facet. Furthermore, any losses on the chip are uniformly
distributed over the modes because of the square geometry of
the chip. This is important as it allows to divide out the optical
losses and describe the propagation of the photons through
the chip by a unitary matrix41.

2 Supplemental Materials
Simulation of scattering systems The simulation of the
12-mode S-matrices follows the model as proposed by
Dorokhov, Mello, Pereira and Kumar18, 19, which divides the
scattering system into short segments. Each segment is shorter
than the transport mean free path l∗ and longer than the wave-
length. Adding a new segment can now be described as a
perturbative correction17. We follow the transfer method of
Ko and Inkson28 for numerical stability.

In our case, the matrices are computed by simulating a
one-dimensional 6-mode waveguide with perfectly reflect-
ing boundary conditions. The waveguide is divided into 40

equally sized sections over the length of the waveguide. Each
section has a probability of 10% to have a scatterer placed
at a random coordinate inside this waveguide segment. This
probability corresponds to the weak scattering regime.

The probability to encounter a scatterer relates to the trans-
port mean free path l∗. Furthermore, given l, the number of
segments N determines the average transmission efficiency.
In our case, we chose N = 40 and 〈T 〉= 0.37 as this allows us
to observe open channels with 200 random instances of these
waveguides. Stronger-scattering waveguides, i.e. with more
segments and scatterers, have lower average transmission such
that an insufficient number of singular values can be sampled
to resolve the open channels. The limit of 200 matrices is
chosen for experimental convenience.

Matrix embedding Our matrix embedding procedure with
the no-gain assumption implies that all singular values of the
entire S matrix should be smaller than or equal to 1. This is
achieved by embedding the 6×6 transmission matrix inside
a larger 12× 12 matrix42. In this section we describe this
procedure.

The n×n scattering matrix S can always be decomposed
by the singular value decomposition: svd(S) =UΣV ∗. Here,
the unitary matrices U and V ∗ describe some basis transfor-
mation to the eigenvectors of the matrix. The matrix Σ is a
diagonal matrix with the singular values and describes the
’weight’ of the eigenmode. Ideally, the network is lossless
and as a result, S must be unitary. In that case, the diagonal
elements of Σ are all of the form of eiθn , with θn some phase
of the nth singular value. In case the amplitude of a singular
value is < 1, there the corresponding eigenmode is lossly and
if it is > 1, then it has gain.

In our case, we only have access to a noisy version of the
transmission matrix. The noise eludes the observation of the
open channels, so it is essential to mitigate the noise on T . We
achieve this by embedding the transmission matrix T inside a
larger, unitary matrix which is constructed using the matrices
of the singular value decomposition. This is necessary as it
is not possible to impose unitarity. The process of embed-
ding the transmission matrix inside a larger, unitary matrix
can physically be understood by interpreting loss as a beam
splitter where one of its output modes directs the light to an
unobserved, inaccessible mode31. The exact splitting ratio
corresponds directly to the loss in the system. This indicates
that the larger unitary matrix should be at least twice the size
of the physical system, so that each mode can have at least one
loss channel available. Note that gain is nonphysical in our
system as there is no additional light source present, besides
the injected photons.

The goal now is to first construct a new unitary matrix S′

that incorporates the coupling to the environment and then to
impose the no-gain assumption. For the first step, we construct
new matrices U ′, Σ′ and V ′, which together form S′ =U ′Σ′V ′∗,
which incorporates the coupling to the environment. Recall
that svd(T ) =UΣV ∗.

6/9



2

2

Laser

Photodiode Optical chip

ppKTP

Detectors

|1,1

 
PBS

R
eflection

T
ransm

ission

Figure 4. Setup. A sketch of the setup. A pulsed laser is used to generate pairs of photons in a ppKTP crystal. The photons
have orthogonal polarization and are separated by a polarizing beam splitter and subsequently coupled into a PM fiber which is
connected to the optical network. After the optical network, the photons go through an SMF to the single-photon detectors via a
fiber polarization controller (not shown). To guarantee temporal overlap of the photons, one of the fiber couplers is placed on a
linear stage. A beam sampler is used to monitor the power using a calibrated photodiode and the pump beam is filtered out after
the ppKTP crystal (not shown).

The new matrix U ′ can be constructed by:

U ′ =
[
U 0
0 I

]
, (3)

where the bottom right of U ′ is filled with an identity matrix
for convenience. In principle, any unitary matrix can be used
as there is no input or output in any of the unobserved modes
anyway. The matrix for V ′ is constructed similarly.

The matrix Σ′ now denotes not just the singular values,
but also the coupling to the unobserved modes, i.e., the loss
channels. This results in four quadrants, each quadrant is a
diagonal matrix. The off-diagonal quadrants denote the cou-
pling to the environment and are constructed such that the
energy is conserved in a L2 (Euclidian) norm. The new matrix
is given by

Σ
′ =

[
Di Do
Do Di

]
, (4)

with Di and Do matrices given by:

Di =


cos 2θ1 0 . . . 0

0 cos 2θ2
...

...
. . . 0

0 . . . 0 cos 2θn

 , (5)

and

Do =


sin 2θ1 0 . . . 0

0 sin 2θ2
...

...
. . . 0

0 . . . 0 sin 2θn

 . (6)

In these matrices, cos 2θi = τ ′, with τ ′ the singular values
after the no-gain restriction. The no-gain restriction entails

that no τ > 1 as it is nonphysical in our system. Hence the
maximal allowed singular value is τ = 1, meaning that all
singular values of a matrix should be rescaled to τ ′ = τ/maxτ .
Imposing no gain in the transmission values is a sufficient
error correction strategy for suppressing experimental noise
and retrieving the bimodal distribution without going so far as
imposing unitarity on S. These renormalised singular values
are then used to compute Σ′ in Eq. 4. The resulting new
singular values are shown in Fig. 2b) of the main text.
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