58 research outputs found

    Widespread drying of European peatlands in recent centuries

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record Climate warming and human impacts are thought to be causing peatlands to dry,potentially converting them from sinks to sources of carbon. However, it is unclear whether the hydrological status of peatlands has moved beyond their natural envelope. Here we show that European peatlands have undergone substantial, widespread drying during the last ~300 years. We analyse testate amoeba-derived hydrological reconstructions from 31 peatlands across Britain, Ireland, Scandinavia and continental Europe to examine changes in peatland surface wetness during the last 2000 years. 60% of our study sites were drier during the period CE 1800-2000 than they have been for the last 600 years; 40% of sites were drier than they have been for 1000 years; and 24% of sites were drier than they have been for 2000 years. This marked recent transition in the hydrology of European peatlands is concurrent with compound pressures including climatic drying, warming and direct human impacts on peatlands, although these factors vary between regions and individual sites. Our results suggest that the wetness of many European peatlands may now be moving away from natural baselines. Our findings highlight the need for effective management and restoration of European peatlands.Natural Environment Research Council (NERC

    Detecting the provenance of Galapagos non-native pollen: The role of humans and air currents as transport mechanisms

    No full text
    The influence of non-native pollen, both long-distance transported and from introduced taxa, on reconstruction of past vegetation is not often well quantified in palynological investigations. We examined both fossil and modern samples from the Galápagos Islands, a remote archipelago lying 1000 km from the nearest continent. These islands are particularly well-suited for such an assessment, as (1) the native flora is limited and well-known, enabling increased taxonomic resolution within the palynological record, and (2) human impact in the Galápagos started after discovery by Europeans in 1535, allowing clear distinctions to be made between native and introduced taxa. Pollen samples were collected from five profiles in the Galápagos and grouped in (a) a pre-human-impact period, (b) an early human-impact period after c. 1535, and (c) a late human-impact period after c. 1973 when the introduced Cinchona pubescens tree started to expand. Introduced taxa accounted for approximately 10% of total pollen (excluding Cyperaceae) throughout the human-impact periods and long-distance transported pollen for approximately 5%. Twenty pollen taxa of introduced plants were found. Cinchona, which grows abundantly near the study sites, accounted for most of the introduced pollen, but an appreciable part also came from introduced plants growing in low numbers and at more distant locations within the archipelago. Total long-distance transported pollen (35 taxa) increased from 3% of total pollen in the pre-human-impact period to 5% in the human-impact periods, probably due to destruction of native vegetation through fire and thus reduction of local pollen production. These phenomena might lead to erroneous interpretation of local plant occurrence when the native/non-native or local/extra-local status of plants is not known. © The Author(s) 2012
    corecore