951 research outputs found

    Electromagnetic vertex function of the pion at T > 0

    Full text link
    The matrix element of the electromagnetic current between pion states is calculated in quenched lattice QCD at a temperature of T=0.93TcT = 0.93 T_c. The nonperturbatively improved Sheikholeslami-Wohlert action is used together with the corresponding O(a){\cal O}(a) improved vector current. The electromagnetic vertex function is extracted for pion masses down to 360MeV360 {\rm MeV} and momentum transfers Q2≤2.7GeV2Q^2 \le 2.7 {\rm GeV}^2.Comment: 17 pages, 8 figure

    Positive Feedbacks in Seagrass Ecosystems – Evidence from Large-Scale Empirical Data

    Get PDF
    Positive feedbacks cause a nonlinear response of ecosystems to environmental change and may even cause bistability. Even though the importance of feedback mechanisms has been demonstrated for many types of ecosystems, their identification and quantification is still difficult. Here, we investigated whether positive feedbacks between seagrasses and light conditions are likely in seagrass ecosystems dominated by the temperate seagrass Zostera marina. We applied a combination of multiple linear regression and structural equation modeling (SEM) on a dataset containing 83 sites scattered across Western Europe. Results confirmed that a positive feedback between sediment conditions, light conditions and seagrass density is likely to exist in seagrass ecosystems. This feedback indicated that seagrasses are able to trap and stabilize suspended sediments, which in turn improves water clarity and seagrass growth conditions. Furthermore, our analyses demonstrated that effects of eutrophication on light conditions, as indicated by surface water total nitrogen, were on average at least as important as sediment conditions. This suggests that in general, eutrophication might be the most important factor controlling seagrasses in sheltered estuaries, while the seagrass-sediment-light feedback is a dominant mechanism in more exposed areas. Our study demonstrates the potentials of SEM to identify and quantify positive feedbacks mechanisms for ecosystems and other complex systems

    Positive Feedbacks in Seagrass Ecosystems – Evidence from Large-Scale Empirical Data

    Get PDF
    Positive feedbacks cause a nonlinear response of ecosystems to environmental change and may even cause bistability. Even though the importance of feedback mechanisms has been demonstrated for many types of ecosystems, their identification and quantification is still difficult. Here, we investigated whether positive feedbacks between seagrasses and light conditions are likely in seagrass ecosystems dominated by the temperate seagrass Zostera marina. We applied a combination of multiple linear regression and structural equation modeling (SEM) on a dataset containing 83 sites scattered across Western Europe. Results confirmed that a positive feedback between sediment conditions, light conditions and seagrass density is likely to exist in seagrass ecosystems. This feedback indicated that seagrasses are able to trap and stabilize suspended sediments, which in turn improves water clarity and seagrass growth conditions. Furthermore, our analyses demonstrated that effects of eutrophication on light conditions, as indicated by surface water total nitrogen, were on average at least as important as sediment conditions. This suggests that in general, eutrophication might be the most important factor controlling seagrasses in sheltered estuaries, while the seagrass-sediment-light feedback is a dominant mechanism in more exposed areas. Our study demonstrates the potentials of SEM to identify and quantify positive feedbacks mechanisms for ecosystems and other complex systems

    The Spatial String Tension and Dimensional Reduction in QCD

    Full text link
    We calculate the spatial string tension in (2+1) flavor QCD with physical strange quark mass and almost physical light quark masses using lattices with temporal extent N_tau=4,6 and 8. We compare our results on the spatial string tension with predictions of dimensionally reduced QCD. This suggests that also in the presence of light dynamical quarks dimensional reduction works well down to temperatures 1.5T_c.Comment: 8 pages ReVTeX, 4 figure

    Pion structure from improved lattice QCD: form factor and charge radius at low masses

    Full text link
    The charge form factor of the pion is calculated in lattice QCD. The non-perturbatively improved Sheikholeslami-Wohlert action is used together with the O(a)\mathcal{O}(a) improved vector current. Other choices for the current are examined. The form factor is extracted for pion masses from 970 MeV down to 360 MeV and for momentum transfers Q2≤2GeV2Q^2 \leq 2 \mathrm{GeV}^2. The mean square charge radius is extracted, compared to previous determinations and its extrapolation to lower masses discussed.Comment: 12 pages REVTeX, 15 figures. Designation of currents clarified. Details concerning extraction of parameters added. Version accepted by Phys. Rev.

    A Method to Exchange Recombinant Differentially Phosphorylated Rhodamine-Labeled Cardiac RLC into Permeabilized Cardiac Trabeculae

    Get PDF
    Cyclosporine, everolimus, and tacrolimus are the cornerstone of immunosuppressive therapy in renal transplantation. These drugs are characterized by narrow therapeutic windows, highly variable pharmacokinetics (PK), and metabolism by CYP3A enzymes. Recently, the decreased activity allele, CYP3A4*22, was described as a potential predictive marker for CYP3A4 activity. This study investigated the effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on cyclosporine, everolimus, and tacrolimus PK in renal transplant patients. CYP3A4*22 carriers showed a significant lower clearance for cyclosporine (−15%), and a trend was observed for everolimus (−7%) and tacrolimus (−16%). Patients carrying at least one CYP3A5*1 allele had 1.5-fold higher tacrolimus clearance compared with noncarriers; however, CYP3A5*3 appeared to be nonpredictive for everolimus and cyclosporine. CYP3A combined genotype did not significantly improve prediction of clearance compared with CYP3A5*3 or CYP3A4*22 alone. These data suggest that dose individualization of cyclosporine, everolimus, or tacrolimus therapy based on CYP3A4*22 is not indicated

    Ecosystem engineering by seagrasses interacts with grazing to shape an intertidal landscape

    Get PDF
    Self-facilitation through ecosystem engineering (i.e., organism modification of the abiotic environment) and consumer-resource interactions are both major determinants of spatial patchiness in ecosystems. However, interactive effects of these two mechanisms on spatial complexity have not been extensively studied. We investigated the mechanisms underlying a spatial mosaic of low-tide exposed hummocks and waterlogged hollows on an intertidal mudflat in the Wadden Sea dominated by the seagrass Zostera noltii. A combination of field measurements, an experiment and a spatially explicit model indicated that the mosaic resulted from localized sediment accretion by seagrass followed by selective waterfowl grazing. Hollows were bare in winter, but were rapidly colonized by seagrass during the growth season. Colonized hollows were heavily grazed by brent geese and widgeon in autumn, converting these patches to a bare state again and disrupting sediment accretion by seagrass. In contrast, hummocks were covered by seagrass throughout the year and were rarely grazed, most likely because the waterfowl were not able to employ their preferred but water requiring feeding strategy ('dabbling') here. Our study exemplifies that interactions between ecosystem engineering by a foundation species (seagrass) and consumption (waterfowl grazing) can increase spatial complexity at the landscape leve

    Liver monocytes and kupffer cells remain transcriptionally distinct during chronic viral infection

    Get PDF
    Due to the scarcity of immunocompetent animal models for chronic viral hepatitis, little is known about the role of the innate intrahepatic immune system during viral replication in the liver. These insights are however fundamental for the understanding of the inappropriate adaptive immune responses during the chronic phase of the infection. We apply the Lymphocytic Choriomenigitis Virus (LCMV) clone 13 mouse model to examine chronic virus-host interactions of Kupffer cells (KC) and infiltrating monocytes (IM) in an infected liver. LCMV infection induced overt cli

    Limited diagnostic accuracy and clinical impact of single-operator peroral cholangioscopy for indeterminate biliary strictures

    Get PDF
    BACKGROUND: Single-operator peroral cholangioscopy (sPOCS) is considered a valuable diagnostic modality for indeterminate biliary strictures. Nevertheless, studies show large variation in its characteristics and measures of diagnostic accuracy. Our aim was to estimate the diagnostic accuracy of sPOCS visual assessment and targeted biopsies for indeterminate biliary strictures. Additional aims were: estimation of the clinical impact of sPOCS and comparison of diagnostic accuracy with brush cytology. METHODS: A retrospective single-center study of adult patients who underwent sPOCS for indeterminate biliary strictures was performed. Diagnostic accuracy was defined as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The clinical impact of sPOCS was assessed by review of medical records, and classified according to its influence on patient management. RESULTS: 80 patients were included, with 40 % having primary sclerosing cholangitis (PSC). Prior ERCP was performed in 88 %, with removal of a biliary stent prior to sPOCS in 55 %. The sensitivity, specificity, PPV, and NPV for sPOCS visual impression and targeted biopsies were 64 %, 62 %, 41 %, and 84 %, and 15 %, 65 %, 75 %, and 69 %, respectively. The clinical impact of sPOCS was limited; outcome changed management in 17 % of patients. Sequential brush cytology sensitivity, specificity, PPV, and NPV were 47 %, 95 %, 80 %, and 83 %. CONCLUSIONS: The diagnostic accuracy of sPOCS for indeterminate biliary strictures was found to be inferior to brush cytology, with a low impact on patient management. These findings are obtained from a select patient population with a high prevalence of PSC and plastic stents in situ prior to sPOCS

    The transition temperature in QCD

    Get PDF
    We present a detailed calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N_t =4 and 6. Calculations with improved staggered fermions have been performed for various light to strange quark mass ratios in the range, 0.05 <= m_l/m_s <= 0.5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the chiral (m_l -> 0) and continuum (aT = 1/N_t -> 0) limits we find for the transition temperature at the physical point T_c r_0 = 0.457(7) where the scale is set by the Sommer-scale parameter r_0 defined as the distance in the static quark potential at which the slope takes on the value, (dV_qq(r)/dr)_r=r_0 = 1.65/r_0^2. Using the currently best known value for r_0 this translates to a transition temperature T_c = 192(7)(4)MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss current ambiguities in the determination of T_c in physical units and also comment on the universal scaling behavior of thermodynamic quantities in the chiral limit.Comment: 18 pages, 14 EPS figures, replaced wrong entries in column 7 of Table A.
    • …
    corecore