138 research outputs found

    Observational causality from -omics

    Get PDF
    Some human traits like disease are heritable, which means that they run in families. This indicates that there must be something on the DNA that affects an individual’s susceptibility to developing a trait. In the last 15 years, scientists from around the world have been very successful in mapping the locations on the DNA that are associated to traits like disease, finding thousands of loci, and hundreds of DNA locations per trait, making them truly complex traits. So, we have a very good understanding about which locations on the DNA are important for developing complex traits like disease. Unfortunately, it’s still unclear how these locations on the DNA affect an individual’s trait. In this thesis I investigate how we can best understand the DNA locations that affect trait susceptibility and in doing so, identify the causes for human traits like disease. One important technique that we have used to test for finding these causal relationships is called Mendelian randomization. Mendelian randomization identifies naturally occurring experiments that have happened in observational data. In principle, Mendelian randomization can conclude the same things from observational data as from an experimental study. So called `observational causality` has many benefits as it’s cheaper than an experiment, and is less burdensome on the subjects, as they are not subjected to any intervention. The causes that I’m interested in are so called `-omics` traits. -omics traits are molecular measurements that are usually strongly regulated by the DNA. This strong DNA regulation makes -omics traits interesting candidates to understand the mechanism behind the genetic loci of other traits. In this thesis we have investigated gene expression, protein levels and microbiome measurements as our -omics traits of interest for a wide variety of traits including celiac disease and LDL-cholesterol levels

    Lack of Association Between Genetic Variants at ACE2 and TMPRSS2 Genes Involved in SARS-CoV-2 Infection and Human Quantitative Phenotypes

    Get PDF
    Coronavirus disease 2019 (COVID-19) shows a wide variation in expression and severity of symptoms, from very mild or no symptoms, to flu-like symptoms, and in more severe cases, to pneumonia, acute respiratory distress syndrome, and even death. Large differences in outcome have also been observed between males and females. The causes for this variability are likely to be multifactorial, and to include genetics. The SARS-CoV-2 virus responsible for the infection depends on two human genes: the human receptor angiotensin converting enzyme 2 (ACE2) for cell invasion, and the serine protease TMPRSS2 for S protein priming. Genetic variation in these two genes may thus modulate an individual's genetic predisposition to infection and virus clearance. While genetic data on COVID-19 patients is being gathered, we carried out a phenome-wide association scan (PheWAS) to investigate the role of these genes in other human phenotypes in the general population. We examined 178 quantitative phenotypes including cytokines and cardio-metabolic biomarkers, as well as usage of 58 medications in 36,339 volunteers from the Lifelines population cohort, in relation to 1,273 genetic variants located in or near ACE2 and TMPRSS2. While none reached our threshold for significance, we observed several interesting suggestive associations. For example, single nucleotide polymorphisms (SNPs) near the TMPRSS2 genes were associated with thrombocytes count (p = 1.8 × 10−5). SNPs within the ACE2 gene were associated with (1) the use of angiotensin II receptor blockers (ARBs) combination therapies (p = 5.7 × 10−4), an association that is significantly stronger in females (pdiff = 0.01), and (2) with the use of non-steroid anti-inflammatory and antirheumatic products (p = 5.5 × 10−4). While these associations need to be confirmed in larger sample sizes, they suggest that these variants could play a role in diseases such as thrombocytopenia, hypertension, and chronic inflammation that are often observed in the more severe COVID-19 cases. Further investigation of these genetic variants in the context of COVID-19 is thus promising for better understanding of disease variability. Full results are available at https://covid19research.nl

    Periprocedural Intravenous Heparin during Endovascular Treatment for Ischemic Stroke: Results from the MR CLEAN Registry

    Get PDF
    Background and Purpose-Intravenous administration of heparin during endovascular treatment for ischemic stroke may improve outcomes. However, risks and benefits of this adjunctive therapy remain uncertain. We aimed to evaluate periprocedural intravenous heparin use in Dutch stroke intervention centers and to assess its efficacy and safety. Methods-Patients registered between March 2014 and June 2016 in the MR CLEAN Registry (Multicenter Randomized Clinical Trial of Endovascular Treatment of Acute Ischemic Stroke), including all patients treated with endovascular treatment in the Netherlands, were analyzed. The primary outcome was functional outcome (modified Rankin Scale) at 90 days. Secondary outcomes were successful recanalization (extended Thrombolysis in Cerebral Infarction ≥2B), symptomatic intracranial hemorrhage, and mortality at 90 days. We used multilevel regression analysis to evaluate the association of periprocedural intravenous heparin on outcomes, adjusted for center effects and prognostic factors. To account for possible unobserved confounding by indication, we analyzed the effect of center preference to administer intravenous heparin, defined as percentage of patients treated with intravenous heparin in a center, on functional outcome. Results-One thousand four hundred eighty-eight patients from 16 centers were analyzed, of whom 398 (27%) received intravenous heparin (median dose 5000 international units). There was substantial between-center variability in the proportion of patients treated with intravenous heparin (range, 0%-94%). There was no significant difference in functional outcome between patients treated with intravenous heparin and those without (adjusted common odds ratio, 1.17; 95% CI, 0.87-1.56), successful recanalization (adjusted odds ratio, 1.24; 95% CI, 0.89-1.71), symptomatic intracranial hemorrhage (adjusted odds ratio,

    Variants in the GPR146 Gene Are Associated With a Favorable Cardiometabolic Risk Profile

    Get PDF
    BACKGROUND: In mice, GPR146 (G-protein-coupled receptor 146) deficiency reduces plasma lipids and protects against atherosclerosis. Whether these findings translate to humans is unknown. METHODS: Common and rare genetic variants in the GPR146 gene locus were used as research instruments in the UK-Biobank. The Lifelines, and The Copenhagen-City Heart Study, and a cohort of individuals with familial hypobetalipoproteinemia were used to find and study rare GPR146 variants. RESULTS: In the UK-Biobank, carriers of the common rs2362529-C allele present with lower low-density lipoprotein cholesterol, apo (apolipoprotein) B, high-density lipoprotein cholesterol, apoAI, CRP (C-reactive protein), and plasma liver enzymes compared with noncarriers. Carriers of the common rs1997243-G allele, associated with higher GPR146 expression, present with the exact opposite phenotype. The associations with plasma lipids of the above alleles are allele dose-dependent. Heterozygote carriers of a rare coding variant (p.Pro62Leu; n=2615), predicted to be damaging, show a stronger reductions in the above parameters compared with carriers of the common rs2362529-C allele. The p.Pro62Leu variant is furthermore shown to segregate with low low-density lipoprotein cholesterol in a family with familial hypobetalipoproteinemia. Compared with controls, carriers of the common rs2362529-C allele show a marginally reduced risk of coronary artery disease (P=0.03) concomitant with a small effect size on low-density lipoprotein cholesterol (average decrease of 2.24 mg/dL in homozygotes) of this variant. Finally, mendelian randomization analyses suggest a causal relationship between GPR146 gene expression and plasma lipid and liver enzyme levels. CONCLUSIONS: This study shows that carriers of new genetic GPR146 variants have a beneficial cardiometabolic risk profile, but it remains to be shown whether genetic or pharmaceutical inhibition of GPR146 protects against atherosclerosis in humans

    Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFN gamma Signaling in Celiac Disease

    Get PDF
    Celiac disease (CeD) is a complex T cell-mediated enteropathy induced by gluten. Although genome-wide association studies have identified numerous genomic regions associated with CeD, it is difficult to accurately pinpoint which genes in these loci are most likely to cause CeD. We used four different in silico approaches-Mendelian randomization inverse variance weighting, COLOC, LD overlap, and DEPICT-to integrate information gathered from a large transcriptomics dataset. This identified 118 prioritized genes across 50 CeD-associated regions. Co-expression and pathway analysis of these genes indicated an association with adaptive and innate cytokine signaling and T cell activation pathways. Fifty-one of these genes are targets of known drug compounds or likely druggable genes, suggesting that our methods can be used to pinpoint potential therapeutic targets. In addition, we detected 172 gene combinations that were affected by our CeD-prioritized genes in trans. Notably, 41 of these trans-mediated genes appear to be under control of one master regulator, TRAF-type zinc finger domain containing 1 (TRAFD1), and were found to be involved in interferon (IFN)gamma signaling and MHC I antigen processing/presentation. Finally, we performed in vitro experiments in a human monocytic cell line that validated the role of TRAFD1 as an immune regulator acting in trans. Our strategy confirmed the role of adaptive immunity in CeD and revealed a genetic link between CeD and IFN gamma signaling as well as with MHC I antigen processing, both major players of immune activation and CeD pathogenesis

    Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project

    Get PDF
    Host genetics are known to influence the gut microbiome, yet their role remains poorly understood. To robustly characterize these effects, we performed a genome-wide association study of 207 taxa and 205 pathways representing microbial composition and function in 7,738 participants of the Dutch Microbiome Project. Two robust, study-wide significant (P < 1.89 × 10-10) signals near the LCT and ABO genes were found to be associated with multiple microbial taxa and pathways and were replicated in two independent cohorts. The LCT locus associations seemed modulated by lactose intake, whereas those at ABO could be explained by participant secretor status determined by their FUT2 genotype. Twenty-two other loci showed suggestive evidence (P < 5 × 10-8) of association with microbial taxa and pathways. At a more lenient threshold, the number of loci we identified strongly correlated with trait heritability, suggesting that much larger sample sizes are needed to elucidate the remaining effects of host genetics on the gut microbiome

    Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome

    Get PDF
    Background: The low-density lipoprotein receptor (LDLR) in the liver is the major determinant of LDL-cholesterol levels in human plasma. The discovery of genes that regulate the activity of LDLR helps to identify pathomechanisms of hypercholesterolemia and novel therapeutic targets against atherosclerotic cardiovascular disease.Methods: We performed a genome-wide RNA interference screen for genes limiting the uptake of fluorescent LDL into Huh-7 hepatocarcinoma cells. Top hit genes were validated by in vitro experiments as well as analyses of datasets on gene expression and variants in human populations.Results: The knockdown of 54 genes significantly inhibited LDL uptake. Fifteen of them encode for components or interactors of the U2-spliceosome. Knocking down any one of 11 out of 15 genes resulted in the selective retention of intron 3 of LDLR. The translated LDLR fragment lacks 88% of the full length LDLR and is detectable neither in non-transfected cells nor in human plasma. The hepatic expression of the intron 3 retention transcript is increased in non-alcoholic fatty liver disease as well as after bariatric surgery. Its expression in blood cells correlates with LDL-cholesterol and age. Single nucleotide polymorphisms and three rare variants of one spliceosome gene, RBM25, are associated with LDL-cholesterol in the population and familial hypercholesterolemia, respectively. Compared to overexpression of wild type RBM25, overexpression of the three rare RBM25 mutants in Huh-7 cells led to lower LDL uptake.Conclusions: We identified a novel mechanism of post-transcriptional regulation of LDLR activity in humans and associations of genetic variants of RBM25 with LDL-cholesterol levels.</p

    Blood Pressure During Endovascular Treatment Under Conscious Sedation or Local Anesthesia

    Get PDF
    OBJECTIVE: To evaluate the role of blood pressure (BP) as mediator of the effect of conscious sedation (CS) compared to local anesthesia (LA) on functional outcome after endovascular treatment (EVT). METHODS: Patients treated in the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN) Registry centers with CS or LA as preferred anesthetic approach during EVT for ischemic stroke were analyzed. First, we evaluated the effect of CS on area under the threshold (AUT), relative difference between baseline and lowest procedural mean arterial pressure (∆LMAP), and procedural BP trend, compared to LA. Second, we assessed the association between BP and functional outcome (modified Rankin Scale [mRS]) with multivariable regression. Lastly, we evaluated whether BP explained the effect of CS on mRS. RESULTS: In 440 patients with available BP data, patients treated under CS (n = 262) had larger AUTs (median 228 vs 23 mm Hg*min), larger ∆LMAP (median 16% vs 6%), and a more negative BP trend (-0.22 vs -0.08 mm Hg/min) compared to LA (n = 178). Larger ∆LMAP and AUTs were associated with worse mRS (adjusted common odds ratio [acOR] per 10% drop 0.87, 95% confidence interval [CI] 0.78-0.97, and acOR per 300 mm Hg*min 0.89, 95% CI 0.82-0.97). Patients treated under CS had worse mRS compared to LA (acOR 0.59, 95% CI 0.40-0.87) and this association remained when adjusting for ∆LMAP and AUT (acOR 0.62, 95% CI 0.42-0.92). CONCLUSIONS: Large BP drops are associated with worse functional outcome. However, BP drops do not explain the worse outcomes in the CS group

    Large-scale association analyses identify host factors influencing human gut microbiome composition

    Get PDF
    To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P <5 x 10(-8)) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 x 10(-20)), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 x 10(-10) <P <5 x 10(-8)) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis
    • …
    corecore