869 research outputs found

    New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range

    Get PDF
    We present a method for producing sub-100 fs electron bunches that are suitable for single-shot ultrafast electron diffraction experiments in the 100 keV energy range. A combination of analytical results and state-of-the-art numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs electron bunches with a spotsize smaller than 500 micron and a transverse coherence length of 3 nm, using established technologies in a table-top set-up. The system operates in the space-charge dominated regime to produce energy-correlated bunches that are recompressed by established radio-frequency techniques. With this approach we overcome the Coulomb expansion of the bunch, providing an entirely new ultrafast electron diffraction source concept

    Compression of sub-relativistic space-charge-dominated electron bunches for single-shot femtosecond electron diffraction

    Full text link
    We demonstrate compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching as a result of a velocity chirp, induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs

    Multipole fringe fields

    Get PDF
    Abstract When creating an initial model of an accelerator, one usually has to resort to a hard edge model for the quadrupoles and higher order multipoles at the start of the project. Ordinarily, it is not until much later on that one has a field map for the given multipoles. This can be rather inconvenient when one is dealing with particularly thin elements or elements which are rather close together in a beamline as the hard edge model may be inadequate for the level of precision desired. For example, in the EMMA project, the two types of quadrupoles used are so close together that they are usually described by a single field map or via hard edge models. The first method has the desired accuracy but was not available at the start of the project and the second is known to be a rough approximation. In this paper, an analytic expression is derived and presented for fringe fields for a multipole of any order with a view to applying it to cases like EMMA. FRINGE FIELDS FOR DIPOLES In order to have fringe fields, given by a → B which satisfy Maxwell's equations, it is important to write all equations down explicitly. For Dipoles, it is sufficient to consider a two dimensional version of the equations Now, if we take B x = 0, we are left with together with which excludes all dependence on x. Further, we seek fringe fields which have a possible fall-off on axis given by the six parameter Enge function [1] with E(z) given by and all a i constants determined by models and/or experiment, or any function which decays sufficiently rapidly. Maxwell's equations (1) imply z . Both wave equations (for B y and B z ) can be easily solved to give Hence, if we ask that equations (1) be solved as well, we end up with If we further restrict ourselves to real magnetic fields, we obtain so B y and B z are given by twice the real and imaginary parts of the function e(z + iy) respectively. A possibility for having a magnetic field whose B y component fall off on axis is given by the six parameter Enge function [1] as which would force B z to have the form for some complex function E(z + iy). If we consider the simple case E(z + iy) = z + iy then equation

    Design considerations for table-top, laser-based VUV and X-ray free electron lasers

    Get PDF
    A recent breakthrough in laser-plasma accelerators, based upon ultrashort high-intensity lasers, demonstrated the generation of quasi-monoenergetic GeV-electrons. With future Petawatt lasers ultra-high beam currents of ~100 kA in ~10 fs can be expected, allowing for drastic reduction in the undulator length of free-electron-lasers (FELs). We present a discussion of the key aspects of a table-top FEL design, including energy loss and chirps induced by space-charge and wakefields. These effects become important for an optimized table-top FEL operation. A first proof-of-principle VUV case is considered as well as a table-top X-ray-FEL which may open a brilliant light source also for new ways in clinical diagnostics.Comment: 6 pages, 4 figures; accepted for publication in Appl. Phys.

    New Simulations for Ion-Production and Back-Bombardment in GaAs Photo-guns

    Get PDF
    GaAs-based DC high voltage photo-guns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed high average current facilities that must operate at tens of milliamperes or more. Specifically, the operating lifetime is dominated by ion back-bombardment of the photocathode from ionized residual gas. While numerous experiments have been performed to characterize the operating lifetime under various conditions, detailed simulations of the ion back-bombardment mechanism that explains these experiments are lacking. Recently, a new user routine was implemented using the code General Particle Tracer (GPT) to simulate electron impact ionization of residual beam line gas and simultaneously track the incident electron, the ejected electron, and the newly formed ion. This new routine was benchmarked against analytical calculations and then applied to experiments performed at the CEBAF injector at the Thomas Jefferson National Accelerator Facility to study the effectiveness of limiting ions from entering the cathode-anode gap using a positively biased anode. These simulations were performed using detailed 3D field maps produced with CST Microwave Studio describing the photo-gun electrostatics. Discussion of the experiment and the application of this new GPT routine to model the experiments will be presented at the workshop

    Performance predictions of a focused ion beam from a laser cooled and compressed atomic beam

    Get PDF
    Focused ion beams are indispensable tools in the semiconductor industry because of their ability to image and modify structures at the nanometer length scale. Here we report on performance predictions of a new type of focused ion beam based on photo-ionization of a laser cooled and compressed atomic beam. Particle tracing simulations are performed to investigate the effects of disorder-induced heating after ionization in a large electric field. They lead to a constraint on this electric field strength which is used as input for an analytical model which predicts the minimum attainable spot size as a function of amongst others the flux density of the atomic beam, the temperature of this beam and the total current. At low currents (I<10 pA) the spot size will be limited by a combination of spherical aberration and brightness, while at higher currents this is a combination of chromatic aberration and brightness. It is expected that a nanometer size spot is possible at a current of 1 pA. The analytical model was verified with particle tracing simulations of a complete focused ion beam setup. A genetic algorithm was used to find the optimum acceleration electric field as a function of the current. At low currents the result agrees well with the analytical model while at higher currents the spot sizes found are even lower due to effects that are not taken into account in the analytical model

    Simulated performance of an ultracold ion source

    Get PDF
    At present, the smallest spot size which can be achieved with state-of-the-art focused ion beam (FIB) technology is mainly limited by the chromatic aberrations associated with the 4.5 eV energy spread of the liquid-metal ion source. Here we numerically investigate the performance of an ultracold ion source which has the potential for generating ion beams which combine high brightness with small energy spread. The source is based on creating very cold ion beams by near-threshold photoionization of a laser-cooled and trapped atomic gas. We present ab initio numerical calculations of the generation of ultracold beams in a realistic acceleration field and including all Coulomb interactions, i.e., both space charge effects and statistical Coulomb effects. These simulations demonstrate that with existing technology reduced brightness values exceeding 105 A m-2 sr-1 V-1 are feasible at an energy spread as low as 0.1 eV. The estimated spot size of the ultracold ion source in a FIB instrument ranges from 10 nm at a current of 100 pA to 0.8 nm at 1 pA

    Statistical M-Estimation and Consistency in Large Deformable Models for Image Warping

    Get PDF
    The problem of defining appropriate distances between shapes or images and modeling the variability of natural images by group transformations is at the heart of modern image analysis. A current trend is the study of probabilistic and statistical aspects of deformation models, and the development of consistent statistical procedure for the estimation of template images. In this paper, we consider a set of images randomly warped from a mean template which has to be recovered. For this, we define an appropriate statistical parametric model to generate random diffeomorphic deformations in two-dimensions. Then, we focus on the problem of estimating the mean pattern when the images are observed with noise. This problem is challenging both from a theoretical and a practical point of view. M-estimation theory enables us to build an estimator defined as a minimizer of a well-tailored empirical criterion. We prove the convergence of this estimator and propose a gradient descent algorithm to compute this M-estimator in practice. Simulations of template extraction and an application to image clustering and classification are also provided
    • …
    corecore