739 research outputs found

    Identifying a task-invariant cognitive reserve network using task potency

    Get PDF
    Cognitive reserve (CR) is thought to protect against the consequence of age- or disease-related structural brain changes across multiple cognitive domains. The neural basis of CR may therefore comprise a functional network that is actively involved in many different cognitive processes. To investigate the existence of such a “task-invariant” CR network, we measured functional connectivity in a cognitively normal sample between 20 and 80 years old (N ​= ​265), both at rest and during the performance of 11 separate tasks that aim to capture four latent cognitive abilities (i.e. vocabulary, episodic memory, processing speed, and fluid reasoning). For each individual, we determined the change in functional connectivity from the resting state to each task state, which is referred to as “task potency” (Chauvin et al., 2018, 2019). Task potency was calculated for each pair among 264 nodes (Power et al., 2012) and then summarized across tasks reflecting the same cognitive ability. Subsequently, we established the correlation between task potency and IQ or education (i.e. CR factors). We identified a set of 57 pairs in which task potency showed significant correlations with IQ, but not education, across all four cognitive abilities. These pairs were included in a principal component analysis, from which we extracted the first component to obtain a latent variable reflecting task potency in this task-invariant CR network. This task potency variable was associated with better episodic memory (β ​= ​0.19, p ​< ​.01) and fluid reasoning performance (β ​= ​0.17, p ​< ​.01) above and beyond the effects of cortical thickness (range [absolute] β ​= ​0.28-0.32, p ​< ​.001). Our identification of this task-invariant network contributes to a better understanding of the mechanism underlying CR, which may facilitate the development of CR-enhancing treatments. Our work also offers a useful alternative operational measure of CR for future studies

    Disease Course Varies According to Age and Symptom Length in Alzheimer's Disease

    Get PDF
    Health-care professionals, patients, and families seek as much information as possible about prognosis for patients with Alzheimer’s disease (AD); however, we do not yet have a robust understanding of how demographic factors predict prognosis. We evaluated associations between age at presentation, age of onset, and symptom length with cognitive decline as measured using the Mini-Mental State Examination (MMSE) and Clinical Dementia Rating sum-of-boxes (CDR-SOB) in a large dataset of AD patients. Age at presentation was associated with post-presentation decline in MMSE (p < 0.001), with younger patients showing faster decline. There was little evidence of an association with change in CDR-SOB. Symptom length, rather than age, was the strongest predictor of MMSE and CDR-SOB at presentation, with increasing symptom length associated with worse outcomes. The evidence that younger AD patients have a more aggressive disease course implies that early diagnosis is essential

    Association of the ATN Research Framework With Clinical Profile, Ccognitive Decline, and Mortality in Patients With Dementia With Lewy Bodies

    Get PDF
    Background and Objectives: The ATN framework has been developed to categorize biological processes within the Alzheimer’s disease (AD) continuum. Since AD pathology often coincides with dementia with Lewy Bodies (DLB), we aimed to investigate the distribution of ATN profiles in DLB and associate ATN-profiles in DLB to prognosis. / Methods: We included 202 DLB patients from the Amsterdam Dementia Cohort (68±7yrs, 19%F, MMSE: 24±3, DAT-SPECT abnormal: 105/119). Patients were classified into eight profiles according to the ATN framework, using CSF Aβ42 (A), CSF p-tau (T) and medial temporal atrophy scores (N). We compared presence of clinical symptoms in ATN profiles and used linear mixed models to analyze decline on cognitive tests (follow-up 3±2yrs for n=139). Mortality risk was assessed using Cox proportional hazards analysis. Analyses were performed on both the eight profiles, as well as three clustered categories (normal AD biomarkers, non-AD pathologic change, AD continuum). / Results: Fifty (25%) DLB patients had normal AD biomarkers (A-T-N-), 37 (18%) had non-AD pathologic change (A-T+N-: 10%/A-T-N+: 6%/A-T+N+: 3%) and 115 (57%) were classified within the AD continuum (A+T-N-: 20%/A+T+N-: 16%/A+T-N+: 10%/A+T+N+: 9%). A+T+N+ patients were older and least often had RBD symptoms. Parkinsonism was more often present in A+T-, compared to A-T+ (independent of N). Compared to patients with normal AD biomarkers, patients in A+ categories showed steeper decline on memory tests and higher mortality risk. Cognitive decline and mortality did not differ between non-AD pathologic change and normal AD biomarkers. / Discussion: In our DLB cohort, we found clinically relevant associations between ATN categories and disease manifestation. Patients within the AD continuum had steeper cognitive decline and shorter survival. Implementing the ATN framework within DLB patients aids in subtyping patients based on underlying biological processes and could provide targets for future treatment strategies, e.g. AD modifying treatment. Expanding the framework by incorporating markers for alpha-synucleinopathy would improve the use of the framework to characterize dementia patients with mixed pathology, which could enhance proper stratification of patients for therapeutic trials

    Amyloid-β, cortical thickness, and subsequent cognitive decline in cognitively normal oldest-old.

    Get PDF
    OBJECTIVE: To investigate the relationship between amyloid-β (Aβ) deposition and markers of brain structure on cognitive decline in oldest-old individuals with initial normal cognition. METHODS: We studied cognitive functioning in four domains at baseline and change over time in fifty-seven cognitively intact individuals from the EMIF-AD 90+ study. Predictors were Aβ status determined by [18 F]-flutemetamol PET (normal = Aβ - vs. abnormal = Aβ+), cortical thickness in 34 regions and hippocampal volume. Mediation analyses were performed to test whether effects of Aβ on cognitive decline were mediated by atrophy of specific anatomical brain areas. RESULTS: Subjects had a mean age of 92.7 ± 2.9 years, of whom 19 (33%) were Aβ+. Compared to Aβ-, Aβ+ individuals showed steeper decline on memory (β ± SE = -0.26 ± 0.09), and processing speed (β ± SE = -0.18 ± 0.08) performance over 1.5 years (P < 0.05). Furthermore, medial and lateral temporal lobe atrophy was associated with steeper decline in memory and language across individuals. Mediation analyses revealed that part of the memory decline observed in Aβ+ individuals was mediated through parahippocampal atrophy. INTERPRETATION: These results show that Aβ abnormality even in the oldest old with initially normal cognition is not part of normal aging, but is associated with a decline in cognitive functioning. Other pathologies may also contribute to decline in the oldest old as cortical thickness predicted cognitive decline similarly in individuals with and without Aβ pathology

    Perseveration and Shifting in Obsessive-Compulsive Disorder as a Function of Uncertainty, Punishment, and Serotonergic Medication

    Get PDF
    © 2023 The Author(s). Published by Elsevier Inc on behalf of the Society of Biological Psychiatry. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Background The nature of cognitive flexibility deficits in obsessive-compulsive disorder (OCD), which historically have been tested with probabilistic reversal learning tasks, remains elusive. Here, a novel deterministic reversal task and inclusion of unmedicated patients in the study sample illuminated the role of fixed versus uncertain rules/contingencies and of serotonergic medication. Additionally, our understanding of probabilistic reversal was enhanced through theoretical computational modeling of cognitive flexibility in OCD. Methods We recruited 49 patients with OCD, 21 of whom were unmedicated, and 43 healthy control participants matched for age, IQ, and gender. Participants were tested on 2 tasks: a novel visuomotor deterministic reversal learning task with 3 reversals (feedback rewarding/punishing/neutral) measuring accuracy/perseveration and a 2-choice visual probabilistic reversal learning task with uncertain feedback and a single reversal measuring win-stay and lose-shift. Bayesian computational modeling provided measures of learning rate, reinforcement sensitivity, and stimulus stickiness. Results Unmedicated patients with OCD were impaired on the deterministic reversal task under punishment only at the first and third reversals compared with both control participants and medicated patients with OCD, who had no deficit. Perseverative errors were correlated with OCD severity. On the probabilistic reversal task, unmedicated patients were only impaired at reversal, whereas medicated patients were impaired at both the learning and reversal stages. Computational modeling showed that the overall change was reduced feedback sensitivity in both OCD groups. Conclusions Both perseveration and increased shifting can be observed in OCD, depending on test conditions including the predictability of reinforcement. Perseveration was related to clinical severity and remediated by serotonergic medication.Peer reviewe

    Assessment of the appropriate use criteria for amyloid PET in an unselected memory clinic cohort: The ABIDE project

    Get PDF
    Introduction The objective of this study was to assess the usefulness of the appropriate use criteria (AUC) for amyloid imaging in an unselected cohort. Methods We calculated sensitivity and specificity of appropriate use (increased confidence and management change), as defined by Amyloid Imaging Taskforce in the AUC, and other clinical utility outcomes. Furthermore, we compared differences in post–positron emission tomography diagnosis and management change between “AUC-consistent” and “AUC-inconsistent” patients. Results Almost half (250/507) of patients were AUC-consistent. In both AUC-consistent and AUC-inconsistent patients, post–positron emission tomography diagnosis (28%–21%) and management (32%–17%) change was substantial. The Amyloid Imaging Taskforce's definition of appropriate use occurred in 55/507 (13%) patients, detected by the AUC with a sensitivity of 93%, and a specificity of 56%. Diagnostic changes occurred independently of AUC status (sensitivity: 57%, specificity: 53%). Discussion The current AUC are not sufficiently able to discriminate between patients who will benefit from amyloid positron emission tomography and those who will not

    Repeatability of parametric methods for [F-18]florbetapir imaging in Alzheimer's disease and healthy controls:A test-retest study

    Get PDF
    Accumulation of amyloid beta (Aβ) is one of the pathological hallmarks of Alzheimer’s disease (AD), which can be visualized using [18F]florbetapir positron emission tomography (PET). The aim of this study was to evaluate various parametric methods and to assess their test-retest (TRT) reliability. Two 90 min dynamic [18F]florbetapir PET scans, including arterial sampling, were acquired (n = 8 AD patient, n = 8 controls). The following parametric methods were used; (reference:cerebellum); Logan and spectral analysis (SA), receptor parametric mapping (RPM), simplified reference tissue model2 (SRTM2), reference Logan (rLogan) and standardized uptake value ratios (SUVr(50–70)). BPND+1, DVR, VT and SUVr were compared with corresponding estimates (VT or DVR) from the plasma input reversible two tissue compartmental (2T4k_VB) model with corresponding TRT values for 90-scan duration. RPM (r2 = 0.92; slope = 0.91), Logan (r2 = 0.95; slope = 0.84) and rLogan (r2 = 0.94; slope = 0.88), and SRTM2 (r2 = 0.91; slope = 0.83), SA (r2 = 0.91; slope = 0.88), SUVr (r2 = 0.84; slope = 1.16) correlated well with their 2T4k_VB counterparts. RPM (controls: 1%, AD: 3%), rLogan (controls: 1%, AD: 3%) and SUVr(50–70) (controls: 3%, AD: 8%) showed an excellent TRT reliability. In conclusion, most parametric methods showed excellent performance for [18F]florbetapir, but RPM and rLogan seem the methods of choice, combining the highest accuracy and best TRT reliability

    Microglial activation in Alzheimer's disease: an (R)-[11C]PK11195 positron emission tomography study

    Get PDF
    AbstractInflammatory mechanisms, like microglial activation, could be involved in the pathogenesis of Alzheimer's disease (AD). (R)-[11C]PK11195 (1-(2-chlorophenyl)-N-methyl-N-1(1-methylpropyl)-3-isoquinolinecarboxamide), a positron emission tomography (PET) ligand, can be used to quantify microglial activation in vivo. The purpose of this study was to assess whether increased (R)-[11C]PK11195 binding is present in AD and mild cognitive impairment (MCI), currently also known as “prodromal AD.”MethodsNineteen patients with probable AD, 10 patients with prodromal AD (MCI), and 21 healthy control subjects were analyzed. Parametric images of binding potential (BPND) of (R)-[11C]PK11195 scans were generated using receptor parametric mapping (RPM) with supervised cluster analysis. Differences between subject groups were tested using mixed model analysis, and associations between BPND and cognition were evaluated using Pearson correlation coefficients.ResultsVoxel-wise statistical parametric mapping (SPM) analysis showed small clusters of significantly increased (R)-[11C]PK11195 BPND in occipital lobe in AD dementia patients compared with healthy control subjects. Regions of interest (ROI)-based analyses showed no differences, with large overlap between groups. There were no differences in (R)-[11C]PK11195 BPND between clinically stable prodromal AD patients and those who progressed to dementia, and BPND did not correlate with cognitive function.ConclusionMicroglial activation is a subtle phenomenon occurring in AD

    Specific Frontostriatal Circuits for Impaired Cognitive Flexibility and Goal-Directed Planning in Obsessive-Compulsive Disorder: Evidence From Resting-State Functional Connectivity.

    Get PDF
    BACKGROUND: A recent hypothesis has suggested that core deficits in goal-directed behavior in obsessive-compulsive disorder (OCD) are caused by impaired frontostriatal function. We tested this hypothesis in OCD patients and control subjects by relating measures of goal-directed planning and cognitive flexibility to underlying resting-state functional connectivity. METHODS: Multiecho resting-state acquisition, combined with micromovement correction by blood oxygen level-dependent sensitive independent component analysis, was used to obtain in vivo measures of functional connectivity in 44 OCD patients and 43 healthy comparison subjects. We measured cognitive flexibility (attentional set-shifting) and goal-directed performance (planning of sequential response sequences) by means of well-validated, standardized behavioral cognitive paradigms. Functional connectivity strength of striatal seed regions was related to cognitive flexibility and goal-directed performance. To gain insights into fundamental network alterations, graph theoretical models of brain networks were derived. RESULTS: Reduced functional connectivity between the caudate and the ventrolateral prefrontal cortex was selectively associated with reduced cognitive flexibility. In contrast, goal-directed performance was selectively related to reduced functional connectivity between the putamen and the dorsolateral prefrontal cortex in OCD patients, as well as to symptom severity. Whole-brain data-driven graph theoretical analysis disclosed that striatal regions constitute a cohesive module of the community structure of the functional connectome in OCD patients as nodes within the basal ganglia and cerebellum were more strongly connected to one another than in healthy control subjects. CONCLUSIONS: These data extend major neuropsychological models of OCD by providing a direct link between intrinsically abnormal functional connectivity within dissociable frontostriatal circuits and those cognitive processes underlying OCD symptoms.This research was funded by a Wellcome Trust Senior Investigator Award (104631/Z/14/Z) awarded to T.W. Robbins. Work was completed at the Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK, supported by a joint award from the Medical Research Council and Wellcome Trust (G00001354). M.M. Vaghi is supported by a Pinsent Darwin Scholarship in Mental Pathology and a Cambridge Home and EU Scholarship Scheme (CHESS) studentship. P.E. VĂ©rtes is supported by the Medical Research Council (grant no. MR/K020706/1). A.M. Apergis-Schoute is supported by the Wellcome Trust above. V. Voon is a Wellcome Trust Fellow
    • …
    corecore