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Specific Fronto-Striatal Circuits for Impaired Cognitive Flexibility  

and Goal-Directed Planning in Obsessive-Compulsive Disorder:  

Evidence From Resting-State Functional Connectivity 

 

Supplemental Information 

 

SUPPLEMENTAL METHODS AND MATERIALS 

Participants  

Patients were recruited through clinical referral from local psychiatric and 

psychological services or local advertisement. Control subjects were recruited from the 

community; none of them were on psychiatric medication and they never suffered from a 

psychiatric disorder. We ensured that patients met criteria for OCD diagnosis and did not 

suffer from any current comorbid Axis I disorder. Exclusion criteria for all participants were 

current substance dependence, head injury and current depression, indexed by Montgomery-

Åsberg Depression Rating Scale (MADRS, (1)) exceeding 16. A fully certified consultant 

psychiatrist, or a consultant psychiatrist when recruitment was conducted through 

advertisement, made DSM-V diagnoses using an extended clinical interview, supplemented 

by the Mini International Neuropsychiatric Interview (2). OCD patients were not enrolled in 

the study if they scored less than 12 on the Yale-Brown Obsessive-Compulsive Scale 

(YBOCS, (3)) and if they reported hoarding symptomatology. In spite of the imposed a cut-

off of maximum score of 16 on MADRS during screening, on the day of testing, one patient 

reported MADRS scores in excess of this cut-off, scoring 21. We included this patient in the 

main analyses, as inclusion or exclusion did not affect the main findings. Self-reported 

measures of anxiety were collected using the State-Trait Anxiety Inventory (STAI, (4)); and, 

in addition to YBOCS scores, self-reported measures of OCD symptomatology were 

collected using the Obsessive Compulsive Inventory-Revised (OCI-R, (5)). Twenty-six of the 
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27 medicated patients were taking selective serotonin reuptake inhibitors (SSRIs), 21 were 

taking SSRIs in isolation, 4 in combination with tricyclic antidepressants (TCAs) (N=1), 

atypical antipsychotic (N=2) or both (N=1). The one remaining patient not taking SSRIs was 

taking a tricyclic antidepressant, clomipramine. All medicated patients were taking stable 

doses of medication for a minimum of 8 weeks prior to taking part in the study. Seventeen 

unmedicated patients were also included in the study, being either drug-naïve (n=12) or off 

medication (n=5) for at least 8 weeks prior taking part of the study (1 patient ceased 

medication 1 year before inclusion in the study; 1 patient ceased medication 1.5 years before 

inclusion in the study; 1 patient ceased medication 9 weeks before inclusion in the study; 1 

patient ceased medication 3 years before inclusion in the study; 1 patients ceased medication 

9 months before inclusion in the study). There was no difference between medicated and 

unmedicated patients in clinical or demographic measures (all p>0.165) including YBOCS 

scores. However, medicated patients were on stable doses of SSRIs and we expect 

pharmacological treatment to have long-term efficacy (6; 7), it is plausible to infer that 

underlying symptomatology of medicated patients is more severe. The study was approved 

by the Local Research Ethical Committee at the University of Cambridge. Participants were 

reimbursed for their time and informed consent was obtained prior participation. 

Procedure 

Imaging Parameters. Data were acquired with a Siemens Trio 3T MRI Scanner and a 

32-channel receive-only head coil (Siemens Medical Solutions). Functional images were 

acquired with a multi-echo planar imaging sequence with online reconstruction [TR, 2.47 s; 

flip angle, 78°; matrix size, 64 × 64; in-plane resolution, 3.75 mm; FOV, 240 mm; 32 oblique 

slices, alternating slice acquisition slice thickness 3.75 mm with 10% gap; iPAT factor, 3; 

bandwidth (BW) = 1,698 Hz/pixel; TE, 12, 28, 44, and 60 ms] (8). Anatomical images for 

warping and supplemental structural analysis were acquired using a T1-weighted 
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magnetization prepared rapid gradient echo (MPRAGE) sequence [176 × 240 FOV; 1-mm in-

plane resolution; inversion time (TI), 1,100 ms]. Anatomical images were skull-stripped and 

anatomical and functional images were co-registered and nonlinearly warped to the MNI 152 

template. 

Resting state acquisition. We measured degree of alertness by asking participant to 

complete the Stanford Sleepiness Scale (9), which was projected on the screen immediately 

before and after the acquisition of resting state data. Participants made their answers verbally 

via a two-way intercom. Participants maintained wakefulness throughout the acquisition of 

resting state data. Acquisition of the resting state increased subjective sleepiness (F=4.955, 

df=1,85, p=0.029), with slightly higher scores after (mean=3.03, SD=1.57) than before 

(mean=2.71, SD=1.41) the acquisition of resting state data. However, the absence of an 

interaction with group (F=1.196, df=1,85, p=0.277), excluded that observed differences in 

resting state functional connectivity might be due to different levels of arousal across 

participants. None of the participants fell asleep during the acquisition of the data. 

Behavioral paradigms. The CANTAB Intra/Extra Dimensional Set Shift (IED) is a 

nine-stage visual discrimination task where stimuli constituted by either one or two artificial 

dimensions (i.e., colour-filled shapes and lines) are presented. Two stimuli are displayed at a 

time (10). Reinforcing feedback is provided automatically by the computer so that the subject 

can learn which stimulus is correct. Initially, simple stimuli, made up of just one of the two 

dimensions are presented. Subsequently, multidimensional stimuli are introduced, namely 

lines superimposed on colour-filled shapes. The rule for correct responding is modified at the 

start of each stage. The participant first learns a series of discriminations in which the same 

stimulus dimension is relevant and likely to promote the development of an attentional set 

towards that dimension (e.g., shapes). The Intra Dimensional Shift (IDs) stage involves the 

transfer of a rule within the same dimension (e.g., shapes) requiring the generalisation of the 
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learnt set to novel stimuli. Critically, the Extra Dimensional Shift (EDs) stage is the core 

component, testing cognitive flexibility and requires a transfer of attention to the previously 

irrelevant dimension (e.g., lines rather than shapes). To pass each stage, six consecutive 

correct responses are required within 50 trials otherwise the task ends. Subjects who failed to 

pass a stage were excluded from data analysis for subsequent stages not attempted. The 

CANTAB One Touch Stockings of Cambridge (OTS) is derived from The Tower of London 

task (11). As a classic test of executive planning, the participant is required to identify the 

number of moves necessary to match balls in the lower arrangement to balls in the top half of 

the display. Problem difficulty varies from 1 to 6 and participants have to work the solution 

in their head and then touch the correct box at the bottom of the screen to indicate their 

response. Participants completed other behavioral tasks, unrelated to the present study, and 

for which analysis is ongoing. The findings reported in our manuscript only refer to specific a 

priori hypotheses and are not the results selected from a larger number of brain-behavior 

measures. Collection of imaging and behavioral data was conducted on the same day for the 

large majority of the participants or within a 2 week time interval. Behavioral data for IED 

and OTS task from one control subject were lost due to technical error. Data from one 

medicated patient on the OTS were not collected because the patient was tested on the same 

task in a previous experimental session.  

Imaging Preprocessing and Analysis. Raw images for each subject were optimally 

combined using T2*combination of echoes. For each subject, decomposition into 

independent components is achieved using FastICA. The identified components are then 

classified as being BOLD or non-BOLD signal based on physical principles (8) according to 

which BOLD signal has percent signal changes that are linearly dependent on echo-time, a 

characteristic of the T2* decay (12; 13). Indeed, percent signal changes of resting BOLD 

fluctuations demonstrate linear TE dependence according to previous studies (14). Thus 



Vaghi et al.  Supplement 

 

5 

linear TE-dependent percent signal changes is a distinctive characteristic of BOLD T2* 

signal. Independent component analysis is applied to identify components. On the basis of 

BOLD linear dependence with echo time, two complementary indexes are used to classify the 

components, namely a pseudo-F-statistic  and a pseudo-F-statistic . In other words, 

components that scale strongly with echo time, will have high  scores, while non-BOLD 

signal changes will have high  scores. Thus, denoising of the data relies on removing low  / 

high  components, which represent all non-BOLD signals including motion artefacts. Thus, 

sources of variance deriving from motion, physiological and scanner artefacts which do not 

scale with echo-time is discarded in a robust, unsupervised manner. In line with previous 

reports (13) we used ME independent components regressions to achieve tailored denoising 

for each subject. This is possible as components for each subject are known and we used 

them to normalize correlation values. This normalization controls for variability due to 

varying BOLD sensitivity with subject motion. In order to overcome the stochastic 

component intrinsic to ICA, the step related to FastICA was run 11 times for each subject. 

For each subject, we conservatively selected the run which retained the lowest number of 

BOLD components, those run were then entered in the group analysis and the associated 

number of components appropriately used as degrees of freedom. Median split of the main 

cohort of 87 subjects according to a measure of total motion computed as the sum of 

framewise displacement (FD) (13), confirmed that subject motion reduced the number of 

BOLD components retained; significantly fewer components were identified for the high 

motion group (t=-3.941, df=85, p=0.0002).  

No band-pass filtering nor smoothing were applied. ME-ICA denoised data were 

entered in 3dGroupInCorr to estimate functional connectivity. 3dClustSim was used to 

control for the probability of false positives at p<0.01 at cluster level after applying a per 

voxel height threshold of p<0.01. We used a Gaussian filter which had equal 
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smoothing length of 3 mm for each axis and specified the spatial domain using a dataset mask 

resulting in a grid size of 62x78x67. 

Network Analysis. To define regional nodes or parcels of cortex for network analysis, 

gray matter areas were defined using FSL’s cortical Harvard-Oxford probabilistic atlas 

thresholded at 25%. Voxels were downsampled to n=471 smaller contiguous regions (nodes) 

with approximately homogeneous sizes (15; 16). Regional time series were only included in 

further analysis if good quality fMRI data were available for all subjects; regions exhibiting 

time series z-score<-1.96 in at least one subject were excluded. Due to susceptibility artefacts 

at the base of the brain in temporal and cerebellar regions, this criterion excluded 12 regions 

from consideration leaving a complete dataset of 459 regions for each subject. Thus, the pre-

processed dataset consisted of 87 individual matrices of regional BOLD oscillations at each 

of 459 cortical and subcortical regions. The Maximal Overlap Discrete Wavelet Transform 

(17) was used to decompose each individual regional mean fMRI time series into 4 scales or 

frequency intervals (Scale 1, 0.101-0.202 Hz; Scale 2, 0.049-0.101 Hz; Scale 3, 0.04-0.024 

Hz; Scale 4, 0.012-0.024 Hz) as implemented in the R-based software library brainwaver 

(freely downloadable at https://cran.r-project.org/) and obtain wavelet correlation matrices for 

each participant. Those were thresholded at 10% cost to build a binary graph, where the 

nodes are the brain regions and the edges are the connections included in the graph. We used 

the minimum spanning tree to ensure that no nodes were disconnected from the rest of the 

network and then added further edges in order of decreasing correlation strength to produce 

binary graphs over a range of connection densities, where connection densities refer to the 

percentage of all possible edges included. Community structures were detected with the 

Louvain algorithm (18) on 10% density graph constructed from the sample mean correlation 

matrix of OCD and control subjects. By maximizing the fraction of the network’s edges that 

are intramodular rather than intermodular, the Louvain algorithm identifies the optimal 

https://cran.r-project.org/
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community partition, i.e., a subdivision of the network into non-overlapping groups of nodes 

(19). Similarly to other clustering techniques, the partition structure obtained with the 

Louvain algorithm may vary from run to run, due to the heuristics in the algorithm. In order 

to overcome this limitation and to make sure of the strength of the community structure 

identified we verified the stability of the partition as follow. Firstly, separately for graph 

constructed from sample mean correlation matrix of controls and OCD, the Louvain 

algorithm was run 100 times independently. In agreement with the method presented by 

Lancichinetti and Fortunato (20), the consensus modular decomposition over those 100 runs 

was obtained. For each group separately, we combined the 100 partitions found by the 

Louvain algorithm and computed the agreement matrix D, which is a nxn (n=vertices) matrix, 

whose entry Dij indicates the number of partitions in which vertices i and j of the network 

were assigned to the same cluster, divided by the number of repetitions (i.e., 100). We used 

consensus clustering from the Brain Connectivity Toolbox, to seek a consensus partition of 

the agreement matrix D of OCD patients and healthy subjects converging to their single 

representative partition respectively. We plotted the two obtained community structures for 

OCD and healthy participants in the alluvial diagram (as implemented in RAW, 

http://raw.densitydesign.org/). Secondly, the Louvain algorithm was run 100 times 

independently on each of the binary matrices of each individual subjects. We obtained a first-

order consensus clustering for each individual subject converging to a single representative 

partition for each subject. Thus, the representative partitions of each subject were used to 

compute the agreement matrix D for subjects belonging to the control group and separately of 

subjects belonging to the OCD group. We used consensus clustering to seek consensus 

partition over controls and OCD subjects to converge to a single representative partition for 

the two groups separately.  

 

http://raw.densitydesign.org/
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SUPPLEMENTAL RESULTS 

Functional striatal connectivity. First, we identified spatial topography patterns of the 

different components of the striatum. Briefly, the DCd showed significant connectivity with 

medial frontal gyrus (BA 8), cerebellum, inferior parietal lobule (BA 40), middle frontal 

gyrus (BA 10), inferior frontal gyrus extending to BA 47, thalamus, posterior cingulate and 

middle temporal gyrus. Seeds in the PUT showed significant functional connectivity to the 

superior frontal gyrus (BA 6), cerebellum, inferior frontal gyrus, precentral and postcentral 

gyrus (BA 3 and BA 4). Connectivity maps of the NAc shifted to a complementary set of 

brain regions including anterior cingulate (BA 24/32), mid-orbital gyrus, thalamus and insula 

(see Figure S2).  

Between-groups differences in striatal connectivity. OCD patients exhibited 

significant reduction in functional connectivity between the left DCd seed and right superior 

frontal gyrus (BA 10/11), left medial frontal gyrus (BA 6), and left inferior temporal gyrus 

(BA 20) (Figure S3A and Table S1). Similarly, significantly reduced functional connectivity 

was found between the right DCd and the left inferior parietal lobule (BA 40), left superior 

frontal gyrus (BA 9, BA 8, BA 6), and middle temporal gyrus (BA 21) (Figure S3A and 

Table S1). Patients showed reduced connectivity between the right PUT and superior and 

inferior parietal lobule (BA 7 and BA 39), middle frontal gyrus (BA 6 and BA 8) and 

postcentral gyrus. From the left PUT, OCD patients exhibited reduced functional connectivity 

to the postcentral gyrus (BA 5/3) and increased to the superior frontal gyrus (BA 9) (Figure 

S3B and Table S1). When seeding from the NAc, increased functional connectivity only was 

found to the anterior cingulate BA 32 in OCD patients (Figure S3C and Table S1). 

Covariation for age did not change any of these results. Status of the medication only affected 

connectivity from the right PUT and NAc, and not DCd, bilaterally by increasing functional 

connectivity to non-PFC cortical regions (Table S1).  
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Cognitive performance and striatal connectivity. For cognitive flexibility, lower 

connectivity between the left BA 10/11/47 and the left DCd was associated with impaired 

cognitive flexibility in the OCD sample (r=-0.646, df=42, p<0.001) and when including 

controls as well (r=-0.478, df=84, p<0.001). For goal-directed executive planning, lower 

connectivity between the right BA 46 and the right PUT was associated with poor goal-

directed planning in the OCD sample (r=-0.393, df=41, p=0.009) and when including 

controls as well (r=-0.340, df=83, p=0.002).  

Clinical scores and ventral striatal connectivity. Previous studies in the literature have 

shown nucleus accumbens deep brain stimulation in OCD affecting fronto-striatal network 

connectivity and reduction in ventral striatum hyper-connectivity being related with 

improvement in the severity of obsessions and compulsions (21). We thus addressed 

relationships between ventral striatum connectivity and clinical measures (MADRS, 

depression; YBOCS, severity of OCD symptoms; STAI-trait and STAI-state, anxiety). 

Increased depression scores were associated with increased functional connectivity between 

the ventral striatum and a range of brain regions mostly including subcortical areas (caudate 

and putamen), thus suggesting increased subcortical connectivity being associated with level 

of depression. Importantly, our OCD patients were free from any comorbid disorder 

including depression; depression scores measured with MADRS were higher in patients 

compared to controls but well below a clinical cut-off for depression. These scores might thus 

represent an epiphenomenon resulting from (and reflecting) severity of OCD 

symptomatology. Decreased functional connectivity from the ventral striatum to cortical 

regions including the cingulate cortex (BA 32) was associated with increased anxiety, while a 

small cluster showed increased connectivity as a function of state-anxiety. We did not find 

evidence of ventral striatum connectivity being associated with the severity of OCD 

symptoms. None of these areas showed overlap with the specific circuit relevant for cognitive 
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flexibility and executive planning. Interestingly, while cognitive scores seem to have a more 

precise, anatomically and functionally definite relationship with fronto-striatal connectivity, 

maps observed for clinical scores are rather diffusely spread throughout the brain. 

Network analysis. Consistently with findings reported in the main text, when applying 

consensus clustering separately for graph constructed from sample mean correlation matrix of 

controls and OCD (described in the methods section), nodes of caudate, putamen and 

cerebellum were clustered in one module in OCD patients but split into separate modules in 

the control group (Figure S6). Results hold for different values of gamma which is a 

parameter defining the resolution of the modularity structure (Figure S6 A-C). Similarly, 

when applying consensus clustering on each of of the binary matrices of each individual 

subject, consistently with findings obtained on the averaged networks, nodes of caudate, 

putamen and cerebellum were clustered in one module in the OCD group but were split into 

separate modules in the control group. We explored a possible relationship between 

modularity measures and clinical and cognitive scores. We applied two different strategies 

and reported those results that reached or approached significance. First, we applied 

consensus clustering on each of the binary matrices for each individual subject, to obtain a 

unique measure of modularity for each subject to be correlated with clinical and cognitive 

scores. In the entire sample of OCD and controls, there was a trend for a significant 

association with anxiety scores (STAI-trait, r=0.196, df=85, p =0.069) and OCD traits 

(r=0.200, df=85, p=0.063). Secondly, for each subject we computed the number of 

connections for each of the nodes that resulted to be clustered in one cohesive functional unit 

(Figure 4A). We thus obtained for each subject the number of connections that were directed 

towards the same subcortical functional unit incorporating the basal ganglia and cerebellum 

(intra-connections for each subject, Figure 4D) and correlated these values with the clinical 

and cognitive scores. In the entire sample of OCD and controls, there was a significant 
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association with anxiety scores (STAI-trait, r=0.256, df-85, p=0.017), and OCD traits (OCI-

R, r=0.222, df=85, p =0.039). In this case, there was also a significant association with 

depression scores in the OCD sample (MADRS, r= 0.362, df=42, p=0.016). Although 

increased modularity and increased intra-connections in the subcortical unit seem to bear a 

relationship with anxiety, OCD symptomatology, and depression, none of these correlations 

survived corrections for multiple comparisons. None of the correlations between modularity 

and cognitive scores were significant. 

 

Figure S1. Maps of BOLD components identified by ME-ICA. Maps of BOLD identified 

by ME-ICA are shown for one representative subject. The components correspond to specific 

functional areas or anatomically connected networks. Example includes language (a), primary 

visual (b), and subcortical (c) areas. 
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Figure S2. Maps of significant within group functional connectivity. (A) Significant 

within group functional connectivity in control group from left and right dorsal caudate 

(DCd) (MNI x y z coordinates: ± 12 6 14). (B) Significant within group functional 

connectivity in control group from left and right putamen (PUT) (MNI x y z coordinates: ± 

24 0 3). (C) Significant within group functional connectivity in control group from left and 

right nucleus accumbens (NAc) (MNI x y z coordinates: ± 12 8 -8). Axial and sagittal views 

are shown. 
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Figure S3. Differences in striatal connectivity between OCD patients and healthy 

subjects.
 
(A) Significant group differences in striatal functional connectivity between OCD 

patients and healthy subjects when seeding from left and right dorsal caudate (DCd) (MNI x 

y z coordinates: ± 12 6 14). (B) Significant group differences in striatal functional 

connectivity between OCD patients and healthy subjects when seeding from left and right 

putamen (PUT) (MNI x y z coordinates: ± 24 0 3). (C) Significant group differences in 

striatal functional connectivity between OCD patients and healthy subjects when seeding 

from left and right nucleus accumbens (NAc) (MNI x y z coordinates: ± 12 8 -8). Blue to red 

coloration for decreased and increased functional connectivity, respectively, in OCD patients 

compared to healthy participants. Seeds and functional connectivity differences are presented 

in standard neuroanatomical space (MNI152). R, right hemisphere; L, left hemisphere. For 

visualization purposes, results are displayed at voxel level threshold of p<0.05 for those areas 

showing cluster-corrected significance at p<0.01 with a per voxel threshold of p<0.01. 
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Figure S4. Percentage of subjects passing each stage of the IED task. Percentage of 

subjects passing each stage shown as a cumulative attrition curve. OCD patients and controls 

performed similarly up to the Extra-Dimensional shift (EDs) stage where significantly more 

OCD patients selectively failed.  

 

 

Figure S5. Ventral striatal connectivity and cognitive flexibility in OCD patients. Axial 

and sagittal view of set of brain areas for which significant reduced connectivity with the 

right ventral striatum was found to be significantly related to worse cognitive flexibility in 

OCD patients (cluster-corrected significance p<0.01 with a per voxel threshold of p<0.01). 

 

 

1.000 -1.000 
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Figure S6. Network modularity structure identified in controls and OCD applying 

consensus clustering and for increasing levels of gamma resolution. (A) Network 

modularity structure applying consensus clustering and with gamma value equal 1. (B) 

Network modularity structure applying consensus clustering and with gamma value equal 

1.2. (C) Network modularity structure applying consensus clustering and with gamma value 

equal 1.5. Across different implementation of the analysis, nodes belonging to caudate, 

putamen and cerebellum are consistently identified as being part of the same module in OCD 

patients and split among few modules in healthy volunteers. Differences in modular 

organization in OCD and healthy volunteers are represented by an alluvial diagram. Each 

module is separated by white gaps. The flows indicate the nodes for which community 

structure changes as a function of diagnosis. 

 

  



Vaghi et al.  Supplement 

 

16 

Table S1. Group differences in resting state functional connectivity between OCD and 

healthy subjects 

Comparison between OCD and healthy subjects 

Seed Region BA Ke
a 

x y z Direction 

L DCd L Medial Frontal Gyrus BA 6 47 -6 -30 77 OCD < CTL 

  
R Superior Frontal Gyrus BA 10/11 31 24 54 0 OCD < CTL 

  
L Inferior Temporal Gyrus BA 20 30 -55 -58 -16 OCD < CTL 

R DCd L Inferior Parietal Lobule BA 40 45 -57 -58 42 OCD < CTL 

  
L Middle Temporal Gyrus BA 21/22 33 -59 -32 -7 OCD < CTL 

  
L Superior Frontal Gyrus BA 9 32 -10 54 35 OCD < CTL 

  
R Superior Frontal Gyrus BA 8/6 31 6 40 59 OCD < CTL 

  
L Superior Frontal Gyrus BA 6/8 30 -13 31 63 OCD < CTL 

L PUT L Postcentral Gyrus BA 5/3 45 -15 -46 73 OCD < CTL 

  
L Superior Frontal Gyrus BA 10/9 30 -22 49 31 OCD > CTL 

R PUT L Superior Parietal Lobule BA 7 45 -31 -76 47 OCD < CTL 

  
R Postcentral Gyrus 

 
42 13 -46 82 OCD < CTL 

  
R Inferior Parietal Lobule BA 40/39 37 50 -58 40 OCD < CTL 

  
R Middle Frontal Gyrus BA 6/8 37 24 24 63 OCD < CTL 

  
L Medial Frontal Gyrus BA 6 33 -4 -25 77 OCD < CTL 

L NAc -- -- -- -- -- -- -- -- 

R NAc L Anterior Cingulate BA 32 33 -13 21 17 OCD > CTL 

  

 Comparison between medicated and unmedicated OCD patients 

Seed Region BA Ke
a
 x y z Direction 

L DCd -- -- -- -- -- -- -- -- 

R DCd -- -- -- -- -- -- -- -- 

L PUT -- -- -- -- -- -- -- -- 

R PUT L Inferior Parietal Lobule BA 39 74 -41 -76 38 MED > UNM 

  L Thalamus  36 -6 -2 5 MED > UNM 

  R Precuneus  36 3 -67 31 MED > UNM 

L NAc R Parahippocampal Gyrus  44 8 -51 -2 MED > UNM 

R NAc R Precentral Gyrus BA 6 56 48 0 -28 MED > UNM 

  R Superior Temporal Gyrus BA 22 44 57 0 0 MED > UNM 

  R Precentral Gyrus BA 4/6 43 22 -25 66 MED > UNM 
a 

Cluster size after applying a per voxel threshold of p<0.01; cluster-corrected significance at least p<0.01, 

coordinates are given in MNI space.  

DCd, Dorsal Caudate; PUT, Putamen; NAc, Nucleus Accumbens; L, left; R, right; BA, Brodmann Area. 

 

 

 

 

 

 

 

 

 

a 
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Table S2. Resting state functional connectivity in cortico-striatal loops in relation to 

cognitive flexibility 

Seed Region BA Ke
a
 x y z Direction 

L DCd L Caudate 
 

227 -13 5 7 Negative 

  
R Putamen 

 
155 22 0 -7     Negative 

  
L  Cerebellum (VIIa) 

 
101 -10 -88 -30 Negative 

  
R Medial Frontal Gyrus BA 9 70 1 52 42 Negative 

  
R Caudate 

 
54 13 7 7 Negative 

  
L Superior Frontal Gyrus BA 10/11/47 45 -20 61 -4 Negative 

  
L Putamen  

 
43 -22 12 -11 Negative 

  
R Insula BA 21/13 34 41 -4 -11 Negative 

  
L Cerebellum (VIIa) 

 
31 -24 -74 -32 Negative 

  
L Cerebellum (VIIa) 

 
29 -38 -83 -30 Negative 

R DCd L Cerebellum (VI) 
 

117 -10 -76 -28 Negative 

  
R Inferior Parietal Lobule BA 40 86 48 -46 54 Negative 

  
L Putamen 

 
82 -17 5 12 Negative 

  
R Putamen 

 
42 22 0 -9 Negative 

  
R Insula BA 13/21 40 41 -4 -7 Negative 

  
R Parahippocampal BA 28/35 35 22 -18 -9 Negative 

  
L Cerebellum (VIIa) 

 
33 -22 -74 -46 Negative 

  
L Cerebellum (IX) 

 
32 -6 -55 -35 Negative 

L PUT L Putamen 
 

191 -24 -2 3 Negative 

  
R Putamen 

 
40 20 3 14 Negative 

R PUT L Putamen 
 

232 -22 5 10 Negative 

  
R Caudate 

 
70 10 5 10 Negative 

  
R Superior Frontal Gyrus BA 9 49 10 63 19 Negative 

  
L Putamen 

 
38 -29 -2 -9 Negative 

  
L Superior Temporal Gyrus BA 22/21 35 -55 -9 3 Negative 

  
R Superior Frontal Gyrus BA 6/8 33 1 19 61 Negative 

L NAc -- --       

R NAc L Anterior Cingulate BA 11 68 -8 57 -6 Negative 

  R Posterior Cingulate BA 31 53 6 -60 21 Negative 

  L Putamen  51 -22  9 -10 Negative 

  R Anterior Cingulate BA 32 50    4 -49 -4 Negative 

  L Inferior Parietal Lobule BA 13 41 -45 -46 24 Negative 

  R Caudate  32 38 -31 0 Negative 
a 

Cluster size after applying a per voxel threshold of p<0.01; cluster-corrected significance at least p<0.01, 

coordinates are given in MNI space.  

DCd, Dorsal Caudate; PUT, Putamen; NAc, Nucleus Accumbens; L, left; R, right; BA, Brodmann Area. 
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Table S3. Resting state functional connectivity in cortico-striatal loops in relation to 

executive planning 

 
Seed 

 
Region BA Ke

 a
 x y z Direction 

L DCd L Cerebellum (VIIa) 
 

81 -34 -74 -28 Negative 

  
R Precentral Gyrus BA 4 41 29 -25 56 Positive 

R DCd -- -- -- -- -- -- -- -- 

L PUT -- -- -- -- -- -- -- -- 

R PUT R Posterior Cingulate BA 23 519 10 -51 24 Positive 

  
L Angular Gyrus BA 39 117 -48 -74 26 Positive 

  
R Angular Gyrus BA 39 87 43 -65 31 Positive 

  
R Medial Frontal Gyrus BA 11 73 6 52 -9 Positive 

  
R Middle Frontal Gyrus BA 46 63 43 35 28 Negative 

  
R Superior Frontal Gyrus BA 10 44 22 59 14 Positive 

  
R Middle Temporal Gyrus BA 21 41 64 -4 -14 Positive 

  
R Supramarginal Gyrus BA 39 32 43 -55 21 Positive 

  
L Posterior Cingulate BA 29 30 -10 -46 5 Positive 

  
L Fusiform Gyrus BA 37 29 -29 -41 -16 Positive 

  
R Postcentral Gyrus BA 40/3 29 38 -37 49 Positive 

L NAc -- -- -- -- -- -- -- -- 

R NAc -- -- -- -- -- -- -- -- 
a
 Cluster size after applying a per voxel threshold of p<0.01; cluster-corrected significance at least p<0.01, 

coordinates are given in MNI space.  

DCd, Dorsal Caudate; PUT, Putamen; NAc, Nucleus Accumbens; L, left; R, right; BA, Brodmann Area. 
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Table S4. Resting state functional connectivity in ventral striatum loop in relation to clinical 

severity in OCD patients 

 Seed Region BA Ke
a
 x y z Direction 

MADRS L NAc R Caudate 
 

178 13 24 0 Positive 

 
  

L Putamen 
 

73 27 -17 7 Positive 

 
  

L Putamen 
 

60 -20 17 6 Positive 

 
  

R Posterior Cingulate BA 30 43 15 -53 12 Positive 

 
  

L Putamen 
 

40 -22 5 -4 Positive 

 
  

R Precuneus BA 19 40 36 -75 36 Positive 

 
  

L Caudate 
 

32 -17 4 13 Positive 

 R NAc R Caudate  277 15 23 -1 Positive 

   R Middle Occipital Gyrus BA 18 136 34 -90 11 Positive 

   L Putamen  95 -22 14 4 Positive 

   R Fusiform Gyrus BA 37 79 38 -60 -5 Positive 

   L Cerebellum  51 -36 -48 -35 Positive 

   R Middle Frontal Gyrus BA 6 47 48 5 41 Positive 

   R Cingulate Gyrus BA 32 41 10 15 31 Positive 

YBOCS L NAc -- --       

R NAc -- --       

STAIT L NAc R Precuneus BA 7 53 6 -58 53 Negative 

 R NAc L Cuneus BA 18 228 -1 -90 14 Negative 

   L Lingual Gyrus BA 18 204 -13 -74 -4 Negative 

   L Fusiform Gyrus BA 19 107 -38 -64 -12 Negative 

   R Putamen  100 17 7 -4 Negative 

   L Putamen  94 -22 3 4 Negative 

   R Middle Frontal Gyrus BA 8 92 34 34 42 Negative 

   R Cingulate Gyrus BA 32 87 3 22 34 Negative 

   L  Putamen/Amygdala  41 -27 -0 -8 Negative 

STAIS L NAc -- --       

 R NAc L Medial Frontal Gyrus BA 8  31 -8 17 52 Positive 
a 

Cluster size after applying a per voxel threshold of p<0.01; cluster-corrected significance at least p<0.01, 

coordinates are given in MNI space.  

NAc, Nucleus Accumbens; L, left; R, right; BA, Brodmann Area. MADRS, Montgomery-Åsberg Depression 

Rating Scale; STAIT, State-Trait Anxiety Inventory-Trait; STAIS, State-Trait Anxiety Inventory-State; 

YBOCS, Yale-Brown Obsessive Compulsive Scale. 

 

  



Vaghi et al.  Supplement 

 

20 

Table S5. Brain regions corresponding to an independent functional unit in OCD 

patients 

Side
a 

Region x y z 

L Caudate Nucleus -14 1 17 

L Caudate Nucleus -12 14 1 

R Caudate Nucleus 14 3 17 

R Caudate Nucleus 12 16 2 

L Thalamus -6 -17 3 

R Thalamus 8 -16 3 

L Pallidum -19 -5 -1 

R Pallidum 20 -4 -1 

L Putamen -22 8 -2 

L Putamen -28 -8 3 

R Putamen 22 10 -2 

R Putamen 28 -5 3 

L Cerebellum -8 -27 -22 

R Cerebellum 6 -32 -21 

R Cerebellum  12 -34 -37 

L Cerebellum Lobule VIIIB -2 -42 -61 

R Cerebellum Lobule IX 3 -40 -54 

L Cerebellum Lobule IX  -12 -54 -60 

L Cerebellum Lobule X -4 -39 -37 

L Brain Stem -2 -18 -30 

L Brain Stem -7 -27 -39 

R Brain Stem 11 -21 -30 

R Brain Stem 3 -33 -46 
a
Coordinates are given in MNI space, L, left; R, right. 
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