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Abstract (words: 285) 25 

Cognitive reserve (CR) is thought to protect against the consequence of age- or disease-26 

related structural brain changes across multiple cognitive domains. The neural basis of CR 27 

may therefore comprise a functional network that is actively involved in many different 28 

cognitive processes. To investigate the existence of such a “task-invariant” CR network, we 29 

measured functional connectivity in a cognitively normal sample between 20-80 years old 30 

(N=265), both at rest and during the performance of 11 separate tasks that aim to capture 31 

four latent cognitive abilities (i.e. vocabulary, episodic memory, processing speed, and fluid 32 

reasoning). For each individual, we determined the change in functional connectivity from the 33 

resting state to each task state, which is referred to as “task potency” (Chauvin et al., 2018; 34 

Chauvin et al., 2019). Task potency was calculated for each pair among 264 nodes (Power 35 

et al., 2011) and then summarized across tasks reflecting the same cognitive ability. 36 

Subsequently, we established the correlation between task potency and IQ or education (i.e. 37 

CR factors). We identified a set of 57 pairs in which task potency showed significant 38 

correlations with IQ, but not education, across all four cognitive abilities. These pairs were 39 

included in a principal component analysis, from which we extracted the first component to 40 

obtain a latent variable reflecting task potency in this task-invariant CR network. This task 41 

potency variable was associated with better episodic memory (β=.19, p<.01) and fluid 42 

reasoning performance (β=.17, p<.01) above and beyond the effects of cortical thickness 43 

(range β=.28-.32, p<.001). Our identification of this task-invariant network contributes to a 44 

better understanding of the mechanism underlying CR, which may facilitate the development 45 

of CR-enhancing treatments. Our work also offers a useful alternative operational measure of 46 

CR for future studies.  47 
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1. Introduction  48 

Cognitive reserve (CR) describes the ability to maintain cognitive function in the presence of 49 

age- or disease-related structural brain changes (Stern, 2012). Individuals with higher 50 

educational attainment, IQ, and physical or cognitive activity, among other factors, generally 51 

have greater CR (Arenaza-Urquijo et al., 2015; Bennett et al., 2003; Groot et al., 2016; Rentz 52 

et al., 2007; Scarmeas et al., 2003, Scarmeas et al., 2009; Valenzuela & Sachdev, 2006; 53 

Wilson et al., 2010; Wilson et al., 2013). A common way to demonstrate the CR phenomenon 54 

is to show that a hypothesized CR factor or mechanism relates to better cognition after 55 

adjusting for brain structure (Stern & Habeck, 2018). Such findings have been reported for 56 

various cognitive domains, and therefore the neural basis of CR may comprise a functional 57 

network that is actively involved in many different cognitive processes. Functional magnetic 58 

resonance imaging (fMRI) has indeed provided evidence for the existence of a “task-59 

invariant” mechanism underlying CR. Based on the comparison of BOLD activation patterns 60 

from multiple cognitive tasks, several studies identified common regions of activity across 61 

conditions (Habeck et al., 2016; Stern et al., 2018; Stern et al., 2008). Recruitment of these 62 

regions showed direct associations with CR factors, such as education (Habeck et al., 2016) 63 

and IQ (Stern et al., 2018; Stern et al., 2008). In addition, resting state fMRI, which has the 64 

advantage of providing information about the brain’s functional organization rather than 65 

regional activity, has also been used in the context of CR. These studies have suggested 66 

that CR is represented by global connectivity of specific “cognitive control” regions (Cole et 67 

al., 2012; Franzmeier et al., 2017a; Franzmeier et al., 2017b), which support cognition at a 68 

task-invariant level by mediating flexible adaptation to changing task demands. 69 

   70 

Although there is general consensus on the existence of a link between resting state 71 

functional connectivity and cognition (van den Heuvel et al., 2010), this link is indirect in 72 

nature as these fMRI data are not acquired during task performance. In fact, several studies 73 

have shown that functional connectivity is dynamic (Hutchison et al., 2013; Gonzalez-Castillo 74 

et al., 2017) and systematic differences between rest and task states exist despite overall 75 
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preservation of network topography (Braun et al., 2015; DeSalvo et al., 2014; Mennes et al., 76 

2013). This is consistent with the idea that neural responses evoked by tasks build upon an 77 

already present functional connectivity baseline (Fox et al., 2006; Smith et al., 2009; Tavor et 78 

al., 2016). These systematic differences between resting state and task-based functional 79 

connectivity have motivated the development of novel fMRI analysis techniques, such as the 80 

“task potency” method (Chauvin et al., 2018; Chauvin et al., 2019). Task potency captures a 81 

brain region’s functional connectivity during task performance after adjusting for its resting 82 

state baseline and thus reflects connectivity changes that occur in response to an 83 

experimental condition. As the task potency method provides task-related information while 84 

also taking into account the interconnected nature of the brain, it offers an ideal approach for 85 

the identification of a network that is actively involved in multiple tasks (Chauvin et al., 2019). 86 

   87 

In the present study, we used a technique that closely resembles the task potency method to 88 

investigate the existence of a task-invariant CR network. We used data from the Reference 89 

Ability Neural Network (RANN) study (Stern et al., 2014), in which healthy individuals across 90 

the adult age span (i.e. 20-80) underwent fMRI during rest and while performing a large set 91 

of cognitive tasks. These tasks reflect four latent cognitive abilities that capture most of the 92 

age-related variance in cognitive performance: vocabulary, episodic memory, processing 93 

speed, and fluid reasoning (Salthouse, 2005, 2009; Salthouse et al., 2008). Based on 11 94 

RANN tasks, we calculated task potency maps for each cognitive ability and then assessed 95 

their relationship with known CR factors (i.e. education and IQ). We aimed to find a common 96 

network of connections in which task potency consistently correlated with these CR factors 97 

across all cognitive abilities. To test if the network behaved in accordance with the CR 98 

theory, we established its influence on cognition relative to the effects of brain structure. We 99 

predicted that greater expression of a CR-related task potency pattern in this network was 100 

associated with better cognitive performance after adjusting for cortical thickness.  101 

  102 

2. Material and methods  103 
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2.1 Participants  104 

All subjects participated in the RANN study, which was approved by the Columbia University 105 

Institutional Review Board. Individuals were recruited through random market mailing and 106 

provided written informed consent prior to participation. Subjects were required to be aged 107 

between 20-80 years, native English speakers, right-handed, and have at least a fourth 108 

grade reading level. Subjects were screened for MRI contraindications and hearing or visual 109 

impairment that would impede testing. Subjects were free of medical or psychiatric conditions 110 

that could affect cognition. Careful screening ensured that the elder subjects did not meet 111 

criteria for dementia or mild cognitive impairment (MCI). A score greater than 130 was 112 

required on the Mattis Dementia Rating Scale (Mattis, 1988) to ensure cognitive normalcy. 113 

Further, participants were required to have no or minimal complaints on a functional 114 

impairment questionnaire (Blessed et al., 1968). From this RANN cohort, we selected all 115 

subjects (n=323) who completed fMRI scans during rest and while performing 11 RANN 116 

tasks (as described below, Picture Naming was not considered for analysis here). Our final 117 

sample consisted of 265 subjects, after exclusion of those with high proportions of missing or 118 

scrubbed fMRI data (see Figure 1). Individuals who were excluded had a higher mean age 119 

and lower global mean cortical thickness; there were no other differences compared to the 120 

included sample (see Supplementary Table 1). The datasets and codes generated for this 121 

study are available on request to the corresponding author. 122 

 123 

2.2 Cognitive reserve factors 124 

We measured education and IQ as they are both contributing factors of CR (Arenaza-Urquijo 125 

et al., 2015). Education was measured in years, and IQ was estimated based on American 126 

National Adult Reading Test (NART) scores (Grober et al., 1991).  127 

 128 

2.3 Cognitive assessment  129 

Task stimuli were back-projected onto a screen located at the foot of the MRI bed using an 130 

LCD projector. Participants viewed the screen via a mirror system located in the head coil 131 
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and, if needed, had vision corrected to normal using MR compatible glasses (manufactured 132 

by SafeVision, LLC. Webster Groves, MO). Responses were made on a LUMItouch 133 

response system (Photon Control Company). Task administration and collection of reaction 134 

time (RT) and accuracy data were controlled by EPrime running on a PC. Task onset was 135 

electronically synchronized with the MRI acquisition computer (Stern et al., 2014).  136 

  137 

We used all tasks from the RANN study, except one (i.e. Picture Naming). Since this task 138 

requires verbal responses in the scanner, it presumably evokes functional connectivity 139 

patterns related to speech production that are not present in other tasks. Moreover, verbally 140 

responding considerably increased the amount of head movement during the scan, which 141 

may introduce task-related biases and thus further complicates the comparison with other 142 

RANN tasks. For the remaining 11 tasks, functional connectivity was computed based on the 143 

entire duration of each scan  (e.g. for episodic memory tasks, both the encoding and retrieval 144 

conditions were included). We briefly describe each RANN task below, grouped by their four 145 

latent cognitive abilities; more details are provided elsewhere (Stern et al., 2014). Scores for 146 

each task were standardized using the total baseline sample of the RANN study as a 147 

reference group (N=396), and for each cognitive ability we created a summary score by 148 

averaging z-scores from tasks within the same ability.  149 

 150 

2.3.1 Vocabulary (VOCAB)  151 

The primary dependent variable for all VOCAB tasks is the proportion of correct items. 152 

Antonyms (Salthouse, 1993): Participants match a given word to its antonym, or to the word 153 

most different in meaning. Synonyms (Salthouse, 1993): Subjects have to match a given 154 

word to its synonym or to the word most similar in meaning, by selecting one option from a 155 

set of other words. In both cases, the probe word is presented in all capital letters at the top 156 

of the screen, and four numbered choices are presented below. 157 

 158 

 2.3.2 Episodic Memory (MEM)  159 
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The primary dependent variable for the episodic memory tests is the proportion of correctly 160 

answered questions. Logical Memory: Stories are presented on the computer screen. The 161 

subject is asked to answer detailed multiple-choice questions about the story, with four 162 

possible answer choices. Paired Associates: Pairs of words are presented, one at a time, on 163 

the screen, and subjects are instructed to remember the pairs. Following the pairs, they were 164 

given a probe word at the top of the screen and four additional word choices below. Subjects 165 

were asked to choose the word that was originally paired with the probe word. Word Order 166 

Recognition: A list of twelve words is presented one at a time on the screen, and subjects are 167 

instructed to remember the order in which the words are presented. Following the word list 168 

they are given a probe word at the top of the screen, and four additional word choices below. 169 

They are instructed to choose out of the four options the word that immediately followed the 170 

word given above.  171 

 172 

2.3.3 Perceptual Speed (SPEED)  173 

The primary dependent variable for all SPEED tasks is reaction time. Letter Comparison 174 

(Salthouse and Babcock, 1991): In this task, two strings of letters, each consisting of three to 175 

five letters, are presented alongside one another. Subjects indicate whether the strings are 176 

the same or different using a differential button press. Pattern Comparison (Salthouse and 177 

Babcock, 1991): Two figures consisting of varying numbers of lines connecting at different 178 

angles are presented alongside one another. Subjects indicate whether the figures were the 179 

same or different by a differential button press. Digit Symbol: A code table is presented on 180 

the top of the screen, consisting of numbers one through nine, each paired with an 181 

associated symbol. Below the code table an individual number/symbol pair is presented. 182 

Subjects are asked to indicate whether the individual pair is the same as that in the code 183 

table using a differential button press. Subjects are instructed to respond as quickly and 184 

accurately as possible.  185 

  186 

2.3.4 Fluid Reasoning (FLUID)  187 



8 

 

The primary dependent variable for FLUID tasks is the proportion of correct trials completed. 188 

Matrix Reasoning [adapted from (Raven, 1962]): Subjects are given a matrix that is divided 189 

into nine cells, in which the figure in the bottom right cell is missing. Below the matrix, they 190 

are given eight figure choices, and they are instructed to evaluate which of the figures would 191 

best complete the missing cell. Paper Folding (Ekstrom et al., 1976): Subjects select a 192 

pattern of holes (from five options) that would result from a sequence of folds in a piece of 193 

paper, through which a hole is then punched. The sequence is given on the top of the 194 

screen, and the five options are given in a row below. Response consisted of pressing 1 of 5 195 

buttons corresponding to the chosen solution. Letter Sets (Ekstrom et al., 1976): Subjects 196 

are presented with five sets of letters, where four out of the five sets have a common rule 197 

(i.e. have no vowels), with one of the sets not following this rule. Subjects are instructed to 198 

select the unique set.  199 

  200 

2.4 MRI acquisition  201 

All MR images were acquired on a 3.0T Philips Achieva Magnet scanner. Participants 202 

underwent two imaging sessions of approximately two hours. Each session started with a 203 

scout, T1-weighted image to determine patient position, after which an MPRAGE scan, 11 204 

fMRI tasks, a resting state BOLD (ranging between 5 and 9.5 minutes), and other imaging 205 

modalities were obtained (i.e. FLAIR, DTI, and ASL, which will not be used in this study). The 206 

MPRAGE parameters were: TR=6.6 ms, TE=3.0 ms, flip angle=8°, FOV=256x256 mm, 207 

matrix size=256x256 mm, number of slices=165, voxel size=1x1x1 mm3. The EPI parameters 208 

were: TR=2000 ms, TE=20 ms, flip angle=72°, FOV=224x132 mm, matrix size=112x110 mm, 209 

number of slices=33, voxel size=2x2x2 mm3 (task scans); TR=2000 ms, TE=20 ms, flip 210 

angle=72°, FOV=224x111 mm, matrix size=112x110 mm, number of slices=37, voxel 211 

size=2x2x2 mm3 (resting state scan). Note that the FOV for resting state scans was smaller 212 

compared to the task scans, which led some brain regions (i.e. predominantly in the visual 213 

cortex and cerebellum) to contain missing values when obtained during rest, but not during 214 

task performance. Each scan was carefully reviewed by a neuroradiologist, and any 215 
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significant findings were reported to the subject’s primary care physician.  216 

  217 

2.5 fMRI preprocessing  218 

Images were preprocessed using an in-house developed native space method (Razlighi et 219 

al., 2014). Briefly, slice timing correction is performed with FSL slicetimer tool. We used 220 

mcflirt (motion correction tools in the FSL package [Jenkinson et al,. 2012]) to register all the 221 

volumes to a reference image (Jenkinson et al,. 2002). The reference image was generated 222 

by registering (6 df, 256 bins mutual information, and Sinc interpolation) all volumes to the 223 

middle volume and averaging them. We then used the method described in Power et al. 224 

(2012) to calculate frame-wise displacement (FD) from the six motion parameters and root 225 

mean square difference (RMSD) of the BOLD percentage signal in the consecutive volumes 226 

for every subject, and used a threshold of 0.3% (Power et al., 2012). RMSD was computed 227 

on the motion-corrected volumes before temporal filtering. The contaminated volumes were 228 

detected by the criteria FD >0.5 mm or RMSD >0.3%. Identified contaminated volumes were 229 

replaced with new volumes generated by linear interpolation of adjacent volumes. Volume 230 

replacement was done before band-pass filtering (Carp, 2013). The motion-corrected signals 231 

were passed through a band-pass filter with the cut-off frequencies of 0.01 and 0.09 Hz. We 232 

used flsmaths–bptf to do the filtering in this study (Jenkinson et al. 2012). Finally, we 233 

residualized the motion-corrected, scrubbed, and temporally filtered volumes by regressing 234 

out the FD, RMSD, left and right hemisphere white matter, and lateral ventricular signals 235 

(Birn et al. 2006). Images that had undergone more than 30% scrubbing, were excluded from 236 

the dataset.  237 

  238 

2.6 Calculation of functional connectivity matrices  239 

T1 image segmentation was done using FreeSurfer v5.1 (Fischl, 2012) and visually checked 240 

for any inaccuracy. Corrections were made according to the Freesurfer provided guidelines 241 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData). The coordinates 242 

of the 264 putative functional nodes, derived from a brain-wide graph that can be subdivided 243 
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into multiple functional systems (e.g. default mode, visual, fronto-parietal [Power et al., 244 

2011]), was transferred to subjects T1 space with non-linear registration of the subjects 245 

structural scan to the MNI template using ANTS software package (Avants et al., 2009). A 246 

spherical mask with 10 mm radius and centered at each transferred coordinates was 247 

generated and intersected with the Freesurfer gray-matter mask to obtain the region of 248 

interest (ROI) mask for the 264 functional nodes. An intermodal, intra-subject, rigid-body 249 

registration of fMRI reference image and T1 scan was performed with FLIRT with 6 degree of 250 

freedom, normalized mutual information as the cost function (Jenkinson & Smith, 2001) and 251 

used to transfer all the ROI masks from T1 space to fMRI space. These transferred ROI 252 

masks were used to average all the voxels within each mask to obtain a single fMRI time-253 

series for each node. For each subject and each condition (rest, 11 RANN tasks), Pearson 254 

correlation coefficients were calculated for all possible pairs among the 264 time-series and 255 

Fisher z-transformed. We discarded 4 of these 264 nodes (3 “uncertain” and 1 “default 256 

mode” region) for further analysis (and all connectivity pairs associated with them), as more 257 

than 20 subjects had missing resting state data in these regions. 258 

  259 

2.7 Calculation of task potency maps  260 

Our approach to calculate task potency is similar (although not identical) to earlier papers on 261 

this method, of which a detailed explanation is provided elsewhere (Chauvin et al., 2018; 262 

Chauvin et al., 2019). In Matlab R2017a, we created vectors containing all unique pairs 263 

among the 260x260 connectivity matrices (i.e. after excluding the 4 nodes described above). 264 

We then standardized each task’s vector on a subject level by the group average resting 265 

state vector. We decided to standardize by group level resting state data because some 266 

individual resting state scans contained missing data for certain ROIs. Specifically, for each 267 

subject’s connectivity value in each pair, we subtracted the mean connectivity and divided by 268 

the standard deviation for that pair across all participants during resting state. This resulted in 269 

11 “task potency” maps for every individual, reflecting pairwise changes in connectivity from 270 

the resting state to each task state. A positive task potency value reflects enhanced 271 
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synchronicity between nodes during task performance, whereas negative task potency 272 

indicates reduced synchronicity (note that this could imply the occurrence of decoupling, but 273 

also an increased inverse coupling). Generally, a value that is further away from zero 274 

(irrespective of the direction) means a greater change in connectivity from resting state.  275 

  276 

2.8 Cortical thickness analysis  277 

Using each individual’s T1-weighted MPRAGE image, cortical thickness measures were 278 

derived using the FreeSurfer v5.1 software package (http://surfer.nmr.mgh.harvard.edu/). 279 

Although the estimation procedure is automated, we manually checked the accuracy of the 280 

spatial registration and the white matter and gray matter segmentations following the analytic 281 

procedures outlined by Fjell and colleagues (2009). Cortical thickness was measured by first 282 

reconstructing the gray/white matter boundary and the cortical surface (Dale et al., 1999), 283 

and the distances between these surfaces at each point across the cortical mantle were 284 

calculated. Using a validated automated labeling system (Fischl et al., 2004), FreeSurfer 285 

divided the cortex into 68 different gyral-based parcellations, and calculated the mean 286 

thickness in each area. We used the global mean cortical thickness across these 68 areas in 287 

our analyses.  288 

 289 

3. Statistical analysis  290 

3.1 Demographic and clinical characteristics  291 

We summarized demographic and clinical characteristics of our sample for different age 292 

groups, and additionally performed Pearson’s correlation analyses to determine the 293 

relationships between age, education, IQ, cognitive performance and global mean cortical 294 

thickness.  295 

 296 

3.2 Summarizing task potency across tasks within cognitive abilities  297 

Since the RANN tasks were categorized into four latent cognitive abilities on a behavioral 298 

level (i.e. vocabulary, episodic memory, processing speed, and fluid reasoning), we 299 
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examined whether the same clusters would also exist in our fMRI data. If the clusters 300 

identified on a neuroimaging level would be in accordance with the four latent cognitive 301 

abilities, this would provide face validity for the task potency method in general, and provide 302 

a rationale for data reduction by summarizing task potency across tasks belonging to the 303 

same cognitive ability. Therefore, we created 11 group average task potency maps, and 304 

determined the between-task correlation of potency values across pairs. In addition, we 305 

performed a k-means clustering analysis in Matlab (i.e. based on a group-level matrix with 306 

rows corresponding to tasks and columns to pairs) to create four clusters, based on the 307 

squared Euclidean distance, and a maximum of 100 iterations. We allowed four clustering 308 

repetitions with new initial cluster centroid positions, and used the solution with the lowest 309 

within-cluster sums of point-to-centroid distances. Based on the outcome (see results 310 

section) we created four new individual level potency maps for each cognitive ability, by 311 

summarizing task potency values across within-ability tasks. 312 

  313 

3.3 Identification of CR-related task-invariant connectivity pairs  314 

To identify task-invariant networks related to CR, we performed linear regression analyses 315 

for all four cognitive abilities, with CR factors (i.e. either education or IQ) as predictors and 316 

task potency in each pair as the dependent variable. We selected all pairs in which the 317 

relationship between task potency and education or IQ was significant (p<.05) across 318 

cognitive abilities. Although we did not specify the direction of these relationships, we 319 

expected that within-pair relationships would be either consistently positive or negative in 320 

each cognitive ability. Furthermore, to account for multiple comparisons, we simulated our 321 

analyses with 1000 permutations in a random dataset (i.e. we randomly re-assigned the IQ 322 

and education scores among our subjects while maintaining their original task potency 323 

maps). With each permutation, we identified the number of pairs that showed significant 324 

relationships in the same direction with the CR proxies across cognitive abilities (see Figure 325 

2). This allowed us to compare the number of task-invariant pairs identified in our “real” 326 

dataset with the amount of significant pairs that would be observed by chance alone. To 327 
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minimize false positive findings, we identified the threshold at which the number of significant 328 

pairs was higher than in 95% of the distribution of the permuted data, and only considered 329 

education and IQ-related networks in which the number of pairs included were above this 330 

threshold for further analysis. To unburden the discussion of the results later on, we already 331 

report here that the thresholds for education and IQ were 20 and 19 pairs, respectively. 332 

Finally, we also determined which pairs showed a consistent relationship with age, since IQ 333 

was collinear with this variable (see Table 2). This step enabled us to determine the degree 334 

of overlap between CR- and age-related pairs, as we wanted to evaluate the possibility that 335 

the identified task-invariant CR networks actually resulted from an age effect. 336 

 337 

3.4 Relationships between task potency and cognitive performance 338 

To test whether the task-invariant CR network(s) identified in the previous step was related to 339 

better cognition after taking into account brain structure, we first summarized task potency 340 

values across the CR-related pairs to derive one score for each participant. To that end, we 341 

performed Principal Component Analysis (PCA) on centered task potency values and then 342 

used of each pair’s loadings to the first component to create subject scores. These subjects 343 

scores take into account the interdependence of task potency values across CR-related 344 

pairs, and treat task potency within the task-invariant CR network as one latent construct. A 345 

higher task potency summary score indicates that an individual expresses the CR-related 346 

task potency pattern to a greater extent. To determine whether higher task potency was 347 

associated with better cognition after adjusting for brain structure, we carried out multiple 348 

linear regression analyses in which cognitive performance in either episodic memory, 349 

processing speed, and fluid reasoning was predicted from global mean cortical thickness (i.e. 350 

across 68 parcellations) and the task potency summary score. Vocabulary was not 351 

considered in this analysis, as performance within this cognitive ability was unrelated to 352 

global mean cortical thickness (i.e. an effect of task potency would not be “above and 353 

beyond” the impact of brain structure and thus not truly reflect the CR phenomenon).  354 

 355 
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Since the CR-related task-invariant network consisted of pairs in which task potency either 356 

positively or negatively correlated with education or IQ, we expected the PCA to provide 357 

loadings in opposite directions. Therefore, in addition to summarizing task potency across all 358 

CR-related pairs, we also subdivided the task-invariant network into pairs with positive and 359 

negative loadings (which we multiplied by -1) to the first component. We used these loadings 360 

to obtain separate subject scores for each type of pairs, and reran our models with either 361 

“positive” or “negative” task potency summary scores as a predictor.    362 

 363 

3.5 Sensitivity analyses 364 

As discussed briefly, in addition to the identification of education- and IQ-related task potency 365 

pairs, we also determined which pairs were consistently associated with age across cognitive 366 

abilities. This was to gain insight into the degree of overlap CR-related pairs and age-related 367 

pairs. As the overlap was limited (see results section) we did not exclude any age-related 368 

pairs from the task-invariant CR network in our main analyses. However, to reduce the 369 

possibility that the identified task-invariant network could be explained by age rather than a 370 

CR-related phenomenon, we repeated our analyses described in the previous section after 371 

restriction to task potency pairs that only correlated with CR factors and were unrelated to 372 

age. In addition, we also performed sensitivity analyses in which task potency pairs with 373 

nodes that belonged to the “uncertain” system as labeled by Power et al (2011) were 374 

excluded. We compared our original findings with the results from these sensitivity analyses 375 

to evaluate their robustness.  376 

 377 

4. Results  378 

4.1 Demographic and clinical characteristics  379 

Table 1 provides demographic features of the study participants. As shown in Table 2, there 380 

was a positive correlation between age and IQ (r=.35, p<.001). Education and IQ were also 381 

positively related (r=.50, p<.001). Performance on each cognitive ability was related to 382 

scores within the other abilities (except for processing speed and vocabulary). Lower global 383 
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mean cortical thickness was associated with older age (r=-.52, p<.001), confirming that this 384 

measure captures age-related changes in brain structure. Finally, higher age and lower 385 

global mean cortical thickness were related to worse cognitive performance (except for 386 

global mean cortical thickness and vocabulary).  387 

  388 

4.2 Summarizing task potency across tasks within cognitive abilities  389 

We used group average task potency maps to determine the between-task correlation of 390 

potency values across pair. As shown in Figure 3, the correlations among within-ability tasks 391 

were generally higher than for between-ability tasks. This observation was confirmed by the 392 

k-means clustering analysis, which resulted in four clusters that were identical to the RANN 393 

latent cognitive abilities (see Supplementary Figure 1). This provided a rationale for the 394 

summarization of task potency values within each cognitive ability, and we thus created four 395 

new task potency maps (i.e. for vocabulary, episodic memory, processing speed and fluid 396 

reasoning) for each individual by summarizing task potency values across within-ability 397 

tasks. These maps were used for further analyses.  398 

  399 

4.3 Identification of CR-related task-invariant connectivity pairs  400 

Linear regression analyses across all four cognitive abilities, revealed 10 pairs in which 401 

education was consistently related to task potency. As this number of pairs was below the 402 

threshold of 19, as established based on random permutations (see statistical analysis 403 

section), the probability that these pairs were observed by chance alone was high and thus 404 

we did not consider this network for further analysis. In contrast, we found 57 pairs in which 405 

IQ was significantly related to task potency across all cognitive abilities. The ROIs included in 406 

these pairs were mainly part of the default mode (21%), fronto-parietal task control (14%) 407 

and salience system (9%, see Supplementary Table 2). Among these pairs, there were both 408 

positive and negative correlations, but the direction of these relationships across cognitive 409 

abilities were always consistent within pairs. 28 pairs were positively related to IQ and 29 410 

pairs showed negative correlations (see Figure 4a and b, respectively). The negative IQ-411 
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related subgroup included all ROI pairs within the default mode system. More generally, the 412 

most pronounced systems (i.e. default mode, fronto-parietal, salience) each showed a 413 

tendency for negative correlations with IQ. Furthermore, compared to the “positive” IQ-pairs, 414 

the “negative” pairs relatively often consisted of between-hemisphere connections (instead of 415 

within hemispheres). Finally, there was a high number of pairs (i.e. 1317) in which task 416 

potency was related to age, but only 17 of these pairs overlapped with those associated with 417 

IQ. This means that the IQ-related task-invariant network was largely unique and could not 418 

be explained by an effect of age alone.  419 

 420 

4.4 Relationships between task potency and cognitive performance 421 

The results of the PCA to summarize task potency across the 57 IQ-related pairs we 422 

identified are listed in Supplementary Table 3. Pairs that positively correlated with IQ 423 

consistently showed positive loadings to the first component, whereas all other pairs (which 424 

were negatively related to IQ) showed negative loadings. We used the task potency 425 

summary score and global mean cortical thickness in multiple regression analyses as 426 

predictors of episodic memory, processing speed and fluid reasoning (see Table 3). Global 427 

mean cortical thickness was significantly related to performance in all three cognitive abilities 428 

(range [absolute] β=.22-32, p<.001; note that the effect for Speed was inverted as a higher 429 

score reflects slower – and thus worse – performance). For both episodic memory and fluid 430 

reasoning, we additionally found that greater expression of the IQ-related task potency 431 

pattern in the task-invariant network was associated with better performance (β=.19, p<.01; 432 

β=.17, p<.01, respectively). There was no relationship between task potency and processing 433 

speed (β=.06, p=.39). 434 

 435 

When we repeated these analyses after dividing the task-invariant network into pairs in which 436 

task potency showed a positive versus a negative correlation with IQ, we found that while 437 

effects of global mean cortical thickness remained similar in all models, the “positive” and 438 

“negative” task potency summary scores demonstrated opposite effects on cognition (see 439 
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Table 4). Specifically, we found that after adjusting for brain structure, greater task potency in 440 

pairs that positively related to IQ was associated with better episodic memory (β=.18, p<.01) 441 

and fluid reasoning (β=.13, p<.05), whereas in pairs with negative correlations with IQ, less 442 

task potency related to better performance in these cognitive abilities (episodic memory: β=-443 

.18, p<.01; fluid reasoning: β=-20, p<.001).  444 

 445 

4.5 Sensitivity analyses 446 

Among the 57 IQ-related task potency pairs in the identified task-invariant network, 17 pairs 447 

also showed a consistent correlation with age across cognitive abilities. To reduce possible 448 

effects of age, we therefore repeated our analyses with the 40 pairs that exclusively 449 

correlated with IQ and were unrelated to age. Furthermore, 7 pairs consisted of nodes that 450 

were classified as “uncertain” by Power et al (2011), and thus we also reran our analyses 451 

with the remaining 50 IQ-related pairs only. All results from our sensitivity analyses were 452 

virtually the same compared to the original findings (see Supplementary tables 4 and 5).  453 

 454 

5. Discussion 455 

5.1 Summary of results 456 

In this study, we used an adapted version of the task potency method (Chauvin et al., 2018; 457 

Chauvin et al., 2019) to identify a task-invariant CR network in a large group of healthy 458 

subjects across the adult age span. This network consisted of 57 pairs of brain regions in 459 

which the change in functional connectivity across various cognitive tasks relative to rest (i.e. 460 

task potency) was directly related to IQ. 28 task potency pairs were positively correlated to 461 

IQ and 29 pairs showed negative correlations. The brain regions involved in this network 462 

were predominantly part of the default mode, fronto-parietal task control and salience 463 

systems (Power et al., 2011). Suppression of the default mode system is associated with the 464 

orientation of attention towards external tasks (Anticevic et al, 2012). The front-parietal task 465 

control and salience system have been previously linked to goal-directed behavior and the 466 

detection of salient stimuli, respectively (Seeley et al, 2007; Zanto et al, 2013). After 467 
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adjusting for global mean cortical thickness, individuals who expressed the CR-related task 468 

potency pattern to a greater extent, performed better on episodic memory and fluid reasoning 469 

tasks. 470 

 471 

5.2 Previous literature on task-invariant networks 472 

We are not the first to investigate the existence of a task-invariant network underlying CR. In 473 

a sample of healthy subjects across the adult age span, Stern and colleagues (2008) 474 

identified a common spatial pattern of task load-related BOLD activity from the encoding 475 

phase of a working memory task that required two distinct cognitive processes: verbal (i.e. 476 

letter) and object (i.e. shape) encoding. This pattern showed correlations with IQ and 477 

vocabulary scores among young individuals, and involved brain regions in the superior and 478 

medial frontal gyrus (Stern et al., 2008). Using a more elaborate cognitive task battery, 479 

another study in a similar sample performed PCA on block and event-related contrasts of 12 480 

RANN tasks (i.e. the same tasks we currently used, with the addition of Picture Naming) and 481 

found that the first principal component constituted a pattern that was common to all tasks, 482 

and also correlated with education. Positive loadings to this pattern were found within regions 483 

associated with the dorsal attention system, and negative loadings were within areas that 484 

were reminiscent of the default mode system (Habeck et al., 2016). In a different study, Stern 485 

et al (2018) used the same RANN data and determined the number of principal components 486 

that optimally predicted IQ in a linear regression. Regression weights from this analysis were 487 

used to create an IQ-related task-invariant BOLD pattern, and expression of this pattern 488 

moderated between cortical thickness and fluid reasoning performance among healthy 489 

individuals across the adult age span. The most important areas that contributed to this 490 

pattern were the cerebellum, (superior) temporal, (inferior) parietal, precuneus and several 491 

regions within the frontal cortex (Stern et al., 2018). A study by Cole and colleagues (2012) 492 

among college students used a working memory task that included a verbal (i.e. words) and 493 

non-verbal (i.e. faces) condition. They showed that the lateral prefrontal cortex (LPFC) was 494 

involved in both conditions, and conceptualized the involvement of this area as related to 495 
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cognitive control (i.e. activation levels correlated to the degree of control required, the 496 

correctness of the response and overall accuracy). Importantly, they subsequently used 497 

resting state fMRI to demonstrate that global connectivity of the LPFC was related to fluid 498 

intelligence (Cole et al., 2012). Further applying this finding to CR, Franzmeier and 499 

colleagues (2017) showed that resting state global connectivity of the LPFC correlated with 500 

education and also acted as a moderator in the relationship between hypometabolism in the 501 

precuneus and memory performance among individuals with prodromal Alzheimer’s disease 502 

(Franzmeier et al., 2017a; Franzmeier et al., 2017b). Generally, it can be concluded that 503 

previous studies on task-invariant CR networks have revealed several overlapping results in 504 

terms of brain areas (e.g. frontal, parietal) that appear to be involved, but that it remains 505 

difficult to fully reconcile these studies due to differences in fMRI approaches. 506 

 507 

In our study, we therefore combined favorable properties of event-related and resting state 508 

fMRI techniques described above. That is, using an adapted version of the task potency 509 

method introduced by Chauvin and colleagues (2018, 2019), we were able to acquire 510 

functional data during task performance, while concurrently taking into account the 511 

interconnected nature of the brain. The task potency measure is derived from an integration 512 

of both task-related and resting state functional connectivity. Functional connectivity during 513 

task performance likely reflects the sum of baseline connectivity and specific changes from 514 

this baseline in response to a given task. By extracting the difference between task-related 515 

and resting state functional connectivity, we arguably captured highly unique, task-related 516 

information. To our knowledge, we are the first to use task potency data to derive a task-517 

invariant network in the context of CR. Interestingly, one study unrelated to CR recently 518 

demonstrated the existence of a common network in which task potency related to cognitive 519 

performance across three different fMRI tasks (Chauvin et al., 2019). Apart from visual and 520 

motor areas (which were expected to be involved due to the visual nature of these tasks and 521 

the motor responses that they required), the authors also found “higher-order” temporo-522 

frontal areas to be part of this network, which they attributed to the exertion of cognitive 523 
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control across all tasks (i.e. a cognitive process that has previously been linked to CR [e.g. 524 

Franzmeier et al., 2017a]).  525 

 526 

5.3 Relevance of our findings 527 

Our study supports the idea that the neural basis of CR, at least partly, constitutes a generic, 528 

task-invariant network. This finding has two important implications. First, such a task-529 

invariant network would be an ideal target for interventions studies. If we succeed at 530 

determining how to improve the performance of this network, it could protect individuals with 531 

initially low CR against the development of many forms of cognitive impairment (e.g. memory 532 

deficits, executive dysfunction) with potentially various etiologies. Treatments aimed at 533 

enhancing CR have been suggested as a promising therapy to delay or prevent the 534 

emergence of cognitive decline (Stern, 2013). Secondly, the characterization of CR as a 535 

single mechanism on a functional brain level provides an alternative operationalization of the 536 

concept. Currently, CR is often measured based on proxies, which are easily measurable 537 

factors (e.g. education, IQ) that are correlated to the concept (Jones et al., 2011). However, 538 

proxies are often relatively static and therefore not suitable to capture within-individual 539 

variation in CR that results from the effects of aging and disease (i.e. decreases) or lifestyle 540 

enhancements (i.e. increases). Moreover, many proxies are not specific to CR, as they are 541 

also correlated with other resilience-related constructs, such as brain maintenance (Reed et 542 

al., 2010). Finally, proxies are conceptually unsatisfactory because they fail to distinguish 543 

between CR as a hypothetical construct and its determinants. Another increasingly popular 544 

approach to quantify CR is the use of residual methods (e.g. van Loenhoud et al., 2017), in 545 

which the discrepancy between brain structure and cognitive performance on an individual 546 

level is used as a more direct measure of the concept. While useful in a scientific context to 547 

elucidate the contributing factors and effects of CR, these methods provide a negative 548 

definition of the concept (i.e. explaining a concept by describing what it is not), which is 549 

insufficient on a theoretical level. Although replication is needed, quantifying CR based on 550 

task potency in the task-invariant network we currently identified, could result in a more 551 
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concrete, explanatory definition of CR.  552 

 553 

5.4 The absence of a task-invariant network for education 554 

We identified a CR network that is task-invariant in the sense that task potency in the 555 

respective connectivity pairs correlated with IQ across all four cognitive abilities. In contrast, 556 

we did not find a task-invariant network for education. There are multiple explanations for this 557 

(absence of a) result. First, it is possible that IQ, as compared to education, is more strongly 558 

related to CR (Jefferson et al., 2011; Richards & Sacker, 2003). Indeed, it has been 559 

established that more intelligent individuals generally attain higher academic achievement 560 

(Deary et al., 2007; Lopes Soares et al., 2015), which suggests that (part of) the effect of 561 

education on CR could be explained by IQ. Moreover, education might be a less suitable 562 

measure of CR, because it has a more limited variance than IQ, especially in older cohorts 563 

and among women (Jones et al., 2011; Star & Lonie, 2008). It has also been argued that due 564 

to differences in ethnic backgrounds or socioeconomic status, academic quality is not 565 

uniform across individuals with equal years of education (Manly et al., 2002). Finally, 566 

heterogeneity in the type of education is not captured when this variable is measured in 567 

years. Individuals who complete many years of education tend to become increasingly 568 

specialized in a certain set of cognitive skills. For example, some persons may be particularly 569 

well-trained within the language domain, whereas other individuals with the same level of 570 

education might have further developed themselves on a mathematical level. As different 571 

cognitive abilities are (at least partly) coordinated by distinct, non-overlapping functional 572 

networks and activity patterns in the brain (Habeck et al., 2016; Habeck et al., 2018; 573 

Połczyńska et al., 2017; Stern et al., 2014; Tsukiura et al., 2001), education may be a less 574 

suitable candidate for the identification of a task-invariant network of CR. We speculate that 575 

education may impart CR through several independent mechanisms that support cognitive 576 

performance on a more task-specific level (Chauvin et al., 2019).  577 

 578 

5.5 Task potency in the context of RANN 579 
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Our data were originally collected in the context of the RANN study, which aims to 580 

investigate whether spatial fMRI networks can be derived that are uniquely associated with 581 

the performance in each of the four cognitive abilities (i.e. vocabulary, episodic memory, 582 

processing speed, and fluid reasoning). Previous results have demonstrated convergent and 583 

discriminant validity for the 12 tasks included in the RANN study (i.e. all tasks that were used 584 

here, with the addition of Picture Naming) on a behavioral and functional brain level. 585 

Specifically, both cognitive performance scores and block-based BOLD activation patterns 586 

showed greater similarity between tasks within the same cognitive ability, and reduced 587 

similarity between tasks that reflected different cognitive abilities, respectively. In addition, 588 

linear indicator regression was used to derive four unique covariance patters for each 589 

cognitive ability, which showed good classification accuracy (i.e. identifying the correct task 590 

based on an individual’s fMRI activation pattern) in independent samples (Habeck et al., 591 

2016; Stern et al., 2014).  592 

 593 

Our results are in line with these reports, as we also found that the four cognitive abilities 594 

naturally emerged from our task potency data. That is, comparable to earlier findings, the 595 

correlations among group-level task potency maps from within-ability tasks where generally 596 

higher than for between-ability tasks, and using a k-means approach, four clusters could be 597 

identified that corresponded to each cognitive ability. These results have two important 598 

implications. First, it further supports the existence of unique neural networks that underlie 599 

four main cognitive abilities that capture most of the age-related variance in cognitive 600 

performance. The fact that we replicated earlier findings with a novel fMRI analysis 601 

approach, suggests the robustness of these reference ability neural networks. Furthermore, 602 

the finding that our neuroimaging data could be summarized in a biologically meaningful 603 

manner and thus behaved as expected, provides additional face validity for the task potency 604 

method in general and demonstrates its utility and broad applicability.  605 

 606 

It is important to note that although our results support the idea that different cognitive 607 
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abilities have distinct spatial fMRI networks, which meaningfully contributes to the existing 608 

body of work on RANN data, this was not the main focus of our current study. In fact, we 609 

were specifically interested in a network that was common (instead of unique) for each 610 

cognitive ability, to identify a task-invariant network in the context of CR. We were thus able 611 

to re-use RANN data for a different purpose compared to the original rationale behind the 612 

study. 613 

 614 

5.6 Strengths and limitations 615 

This study has several strengths. We selected a relatively large, community-based sample of 616 

healthy individuals across a broad age range (i.e. 20-80). Importantly, each of these subjects 617 

underwent an elaborate fMRI procedure that included a resting state scan and 11 task-based 618 

scans. This within subjects-design is excellent for our research aim to a network that is truly 619 

involved in multiple tasks for each individual. Furthermore, we used a novel technique (i.e. 620 

task potency) to analyze the fMRI data, which provided unique, task-relevant information 621 

about the functional organization of the brain.  622 

 623 

One of the limitations of our study is that while most of the cognitive abilities were extensively 624 

assessed with three different tasks, our fMRI test battery only included two vocabulary tasks. 625 

It is therefore possible that the accuracy with which vocabulary performance was estimated, 626 

was somewhat lower compared to the other latent cognitive abilities. On a methodological 627 

level, another limitation is the fact that we excluded some subjects from our originally 628 

selected sample, as well as removed a set of ROIs from our analyses (i.e. due to large 629 

percentages of missing or scrubbed data). Excluded subjects, on average, were older and 630 

had a lower cortical thickness than the included sample. This implies that some degree of 631 

selection bias was at play, which may have affected the generalizability of our findings. 632 

Likewise, the exclusion of ROIs from our analysis may have caused us to overlook potentially 633 

relevant connectivity pairs in which task potency is (task-invariantly) related to CR. On a 634 

related note, for practical reasons (i.e. missing data for some individuals in certain ROIs 635 
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during their resting state scans), we calculated task potency values based on group level 636 

resting state data, rather than using a subject level approach. There have been recent 637 

papers on the task potency technique that describe ways to obtain task potency values 638 

entirely based on subject-specific data (Chauvin et al., 2018; Chauvin et al., 2019). Briefly, 639 

this approach entails the subtraction of an individual’s resting state value in each connectivity 640 

pair from that subject’s task-based value, instead of standardizing it by the mean and 641 

standard deviation of the group average resting state data. This method accounts for 642 

possible differences between subjects in functional connectivity during rest, and is thus 643 

presumably more tailored towards the individual. On the other hand, without standardization 644 

to the group level, comparison between individuals becomes more difficult, which is a 645 

potential disadvantage of the subject-level task potency method in comparison to our current 646 

approach. 647 

 648 

5.7 Future studies 649 

Our findings generate several areas for future study. First, a comparison between different 650 

task potency approaches (i.e. based on individual versus group level resting state data) is 651 

important to determine which provides the most meaningful data and thus should be the 652 

method of choice. Also, longitudinal data are useful to better understand how task potency in 653 

the task-invariant network specifically affects trajectories of decline in the four distinct 654 

cognitive abilities. Based on this cross-sectional study, we cannot infer whether the CR-655 

related task potency pattern acts through affecting “baseline performance” (e.g. providing an 656 

initial advantage that is retained in the face of age- or disease-related structural brain 657 

changes) or by influencing longitudinal cognitive changes (e.g. allowing better preservation of 658 

cognitive function over time despite structural changes). In addition, since we showed that 659 

task potency was correlated with age in many connectivity pairs, it would also be interesting 660 

to examine how task potency itself changes over time as individuals age. Furthermore, 661 

cross-validation of our results in an independent sample or using different cognitive tests will 662 

be important to examine the robustness the task-invariant CR network and its effects on 663 
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cognitive performance. Finally, other CR factors than education and IQ could be included in 664 

our approach. It would be informative to investigate whether measures of occupational 665 

attainment, for example, will also result in the identification of a task-invariant CR network, 666 

and to what degree it overlaps with the network we found based on IQ.  667 

 668 

5.8 Conclusions 669 

In summary, we demonstrated that CR is (at least partly) related to a functional network that 670 

supports cognitive function in a task-invariant manner. The identified task-invariant CR 671 

network, in which task potency related to IQ across four latent cognitive abilities, contributes 672 

to a better understanding of the mechanisms behind CR. This may in turn facilitate the 673 

development of new strategies to enhance CR and thereby minimize the negative impact of 674 

age- or disease-related structural brain changes on cognition. In addition, the task-invariant 675 

CR network could serve as a useful alternative operational measure of CR in a scientific 676 

context. 677 

 678 

Research highlights 679 

- Cognitive reserve (CR) protects cognition in the face of structural brain changes.  680 

- We studied the neural basis of CR in healthy individuals across the adult age span. 681 

- We identified a generic, “task-invariant” functional network underlying CR. 682 

- “Task potency” in this network related to IQ across four cognitive abilities. 683 

- The CR network predicted cognitive performance above and beyond brain structure. 684 
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Table 1. Characteristics of our sample according to  different age groups 

Data are displayed as mean ± SD. IQ=score on the American National Adult Reading Test, DRS=score on the Mattis Dementia Rating Scale, Cth=cortical 

thickness. Global mean cortical thickness was obtained by averaging across 68 Freesurfer parcellations. 

 

Table 2. Relationships between age, CR factors, cor tical thickness and cognitive performance 

 Age  IQ Education  VOCAB MEM SPEED FLUID Global mean Cth 

Age - .35*** .11 .35*** -.34*** .54*** -.32*** -.52*** 

IQ .35*** - .50*** .74*** .25*** .09 .31*** -.07 

Education .11 .50*** - 37*** .20** -.03 .24*** -.01 

VOCAB .35*** .74*** .37*** - .27*** -.04 .29*** -.06 

MEM -.34*** .25*** .20** .27*** - -.41*** .59*** .24*** 

SPEED .54*** .09 -.03 -.04 -.41*** - .30*** -.24*** 

FLUID -.32*** .31*** .24*** .29*** .59*** .30*** - .29*** 

Global mean Cth -.52*** -.07 -.01 -.06 .24*** -.24*** .29*** - 

Results represent Pearson’s correlation coefficients, ***=significant at p<.001, **=significant at p<.01, *=significant at p<.05. IQ=score on the American National 

Adult Reading Test, Cth=cortical thickness.  

Age 20-29 30-39 40-49 50-59 60-69 70-80 

N 42 47 39 44 49 44 

Sex (% male) 31.0 31.9 56.4 54.5 55.1 45.5 

Education (years) 15.64 ± 2.23 16.28 ± 2.39 16.13 ± 2.73 16.43 ± 1.82  16.16 ± 2.30 16.80 ± 2.76 

IQ 113.55 ± 8.49 112.66 ± 8.94 113.72 ± 9.21 117.52 ± 7.51 119.78 ± 7.58 120.65 ± 7.16 

DRS total 140.51 ± 2.51 139.89 ± 2.68 139.39 ± 2.68 140.32 ± 2.99 139.67 ± 3.13 139.64 ± 2.86 

Global mean Cth 2.70 ± .11 2.65 ± .09 2.66 ± .09 2.61 ± .07 2.57 ± .10 2.53 ± .11 
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Table 3. The effects of global mean cortical thickn ess and task potency on cognitive 

performance 

 MEM SPEED FLUID 

 β P β P β P 

Global mean Cth  .28*** <.001 -.22*** <.001 .32*** <.001 

TP .19** <.01 .06 .39 .17** <.01 

β=standardized coefficient, Cth=cortical thickness, TP=task potency in the IQ-related task-invariant network. 

***=significant at p<.001, **=significant at p<.01, *=significant at p<.05. 

 

 

Table 4. The effects of global mean cortical thickn ess and task potency in “positive” versus 

“negative” pairs on cognitive performance 

 MEM SPEED FLUID 

Positive β P β P β P 

Global mean Cth  .28*** <.001 -.22*** <.001 .31*** <.001 

TP .18** <.01 .06 .31 .13* .03 

Negative       

Global mean Cth .27*** <.001 -.23*** <.001 .31*** <.001 

TP -.18** <.01 -.04 .51 -.20*** <.001 

β=standardized coefficient, Cth=cortical thickness, TP=task potency in the IQ-related task-invariant network. 

***=significant at p<.001, **=significant at p<.01, *=significant at p<.05. 
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Figure 1. Flowchart illustrating the inclusion/exclusion of individuals in this study 

RANN=Reference Ability Neural Network study, ROI=region of interest according to Power et al (2011), FOV=field 

of view. 

 

  

Excluded 13: >10 ROI’s fell outside 

the FOV of the resting state scan 

N=265 

N=310 

Subjects who completed resting 

state and 11 RANN tasks fMRI scans: 

N=323 

Excluded 45: >30% of time series 

scrubbed in one or more scans 
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Figure 2. Distribution of the number of pairs that are significant across cognitive abilities in a 

random dataset 

We performed 1000 permutations based on sampling without replacement. Red line=number of pairs found in 

actual dataset, dotted blue line=threshold at which the number of significant pairs was higher than in 95% of the 

permuted random dataset. 
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Figure 3. Correlation between group task potency maps for each RANN task 

Tasks represented in ascending order: 1. Antonyms, 2. Synonyms (VOCAB); 3. Logical Memory, 4. Paired 

Associates, 5. Word Order Recognition (MEM); 6. Letter Comparison, 7. Pattern Comparison, 8. Digit Symbol 

(SPEED); 9. Matrix Reasoning, 10. Paper Folding, 11. Letter Sets (FLUID). 
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Figure 4. The IQ-related task-invariant network 

A) Pairs with positive loadings to the task potency summary score, B) pairs with negative loadings to the task 

potency summary score. The task potency summary score was created by performing PCA and using loadings to 

the first principal component to create subject scores. ROIs with the same color belong to the same system as 

defined by Power et al (2011). Edges in blue reflect a negative relationship between IQ and that pair’s task 

potency, edges in red indicate a positive relationship. This figure was created with the BrainNet Viewer 

(http://www.nitrc.org/projects/bnv/) (Xia et al., 2013). 
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