29 research outputs found

    Where Are the fMRI Correlates of Phosphene Perception?

    Get PDF
    Pulses of transcranial magnetic stimulation (TMS) over occipital cortex can induce transient visual percepts called phosphenes. Phosphenes are an interesting stimulus for the study of the human visual system, constituting conscious percepts without visual inputs, elicited by neural activation beyond retinal and subcortical processing stages in the visual hierarchy. The same TMS pulses, applied at threshold intensity phosphene threshold (PT), will prompt phosphene reports on half of all trials (“P-yes”) but not on the other half (“P-no”). Contrasting brain activity (P-yes > P-no) can provide unique information on neural mechanisms underlying conscious percepts, as has been demonstrated by published EEG studies. Yet to our knowledge no articles reporting analogous contrasts with functional magnetic resonance imaging (fMRI) have been published. Since it seems unlikely that such studies have never been performed, this straightforward and technically feasible idea may have been explored in multiple failed, and unpublished, attempts. Here, we argue why such unsuccessful attempts, even small-scale, best be shared. We also report our own failed attempt to find phosphene-related activity in fMRI. Threshold phosphenes are weak percepts, and their detection subjective and difficult. If fMRI correlates of phosphenes are obtainable with this contrast, small-scale (‘pilot’) measurements may not be sufficiently powerful to detect them. At the same time, due to the challenges and costs involved in TMS-fMRI, attempts might not often get beyond the piloting stage. We propose that the only way out of this quandary is the communication and sharing of such unsuccessful attempts and associated data

    LayNii: a software suite for layer-fMRI

    Get PDF
    High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain ‘layerification’ and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data

    Asymmetry

    No full text
    “Generalization asymmetry in multivariate cross-classification: When representation A generalizes better to representation B than B to A” PONE-D-19-1940

    The Search for the Face of the Visual Homunculus

    No full text
    The functional organization within face-sensitive regions in the brain is largely unknown. A new fMRI study provided evidence that a face-selective region contains neighboring patches of cortex that encode physically neighboring face features. We suggest that multiple mechanisms should be considered for a full understanding of the functional maps in face-selective cortex.status: publishe

    Power of mind:Attentional focus rather than palatability dominates neural responding to visual food stimuli in females with overweight

    No full text
    Research investigating neural responses to visual food stimuli has produced inconsistent results. Crucially, high-caloric palatable foods have a double-sided nature - they are often craved but are also considered unhealthy - which may have contributed to the inconsistency in the literature. Taking this double-sided nature into account in the current study, neural responses to individually tailored palatable and unpalatable high caloric food stimuli were measured, while participants' (females with overweight: n = 23) attentional focus was manipulated to be either hedonic or neutral. Notably, results showed that the level of neural activity was not significantly different for palatable than for unpalatable food stimuli. Instead, independent of food palatability, several brain regions (including regions in the mesocorticolimbic system) responded more strongly when attentional focus was hedonic than when neutral (p &lt; 0.05, cluster-based FWE corrected). Multivariate analyses showed that food palatability could be decoded from multi-voxel patterns of neural activity (p &lt; 0.05, FDR corrected), mostly with a hedonic attentional focus. These findings illustrate that the level of neural activity might not be proportionate to the palatability of foods, but that food palatability can be decoded from multi-voxel patterns of neural activity. Moreover, they underline the importance of considering attentional focus when measuring food-related neural responses.</p

    A Probabilistic Functional Atlas of Human Occipito-Temporal Visual Cortex

    No full text
    Human visual cortex contains many retinotopic and category-specific regions. These brain regions have been the focus of a large body of functional magnetic resonance imaging research, significantly expanding our understanding of visual processing. As studying these regions requires accurate localization of their cortical location, researchers perform functional localizer scans to identify these regions in each individual. However, it is not always possible to conduct these localizer scans. Here, we developed and validated a functional region of interest (ROI) atlas of early visual and category-selective regions in human ventral and lateral occipito-temporal cortex. Results show that for the majority of functionally defined ROIs, cortex-based alignment results in lower between-subject variability compared to nonlinear volumetric alignment. Furthermore, we demonstrate that 1) the atlas accurately predicts the location of an independent dataset of ventral temporal cortex ROIs and other atlases of place selectivity, motion selectivity, and retinotopy. Next, 2) we show that the majority of voxel within our atlas is responding mostly to the labeled category in a left-out subject cross-validation, demonstrating the utility of this atlas. The functional atlas is publicly available (download.brainvoyager.com/data/visfAtlas.zip) and can help identify the location of these regions in healthy subjects as well as populations (e.g., blind people, infants) in which functional localizers cannot be run
    corecore