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Abstract
Objective In the current study, we use functional magnetic
resonance imaging (fMRI) and multi-voxel pattern analysis
(MVPA) to investigate whether tobacco addiction biases basic
visual processing in favour of smoking-related images. We
hypothesize that the neural representation of smoking-related
stimuli in the lateral occipital complex (LOC) is elevated after
a period of nicotine deprivation compared to a satiated state,
but that this is not the case for object categories unrelated to
smoking.
Methods Current smokers (≥10 cigarettes a day) underwent
two fMRI scanning sessions: one after 10 h of nicotine absti-
nence and the other one after smoking ad libitum. Regional
blood oxygenated level-dependent (BOLD) response was
measured while participants were presented with 24 blocks
of 8 colour-matched pictures of cigarettes, pencils or chairs.
The functional data of 10 participants were analysed through a
pattern classification approach.

Results In bilateral LOC clusters, the classifier was able to
discriminate between patterns of activity elicited by visually
similar smoking-related (cigarettes) and neutral objects
(pencils) above empirically estimated chance levels only during
deprivation (mean = 61.0%, chance (permutations) = 50.0%,
p = .01) but not during satiation (mean = 53.5%, chance (per-
mutations) = 49.9%, ns.). For all other stimulus contrasts, there
was no difference in discriminability between the deprived and
satiated conditions.
Conclusion The discriminability between smoking and non-
smoking visual objects was elevated in object-selective brain
region LOC after a period of nicotine abstinence. This indicates
that attention bias likely affects basic visual object processing.
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Introduction

While tobacco addiction is often regarded as the direct result of
the pharmacological effects of nicotine, there are various other
processes involved as well. For instance, a critical role in the
maintenance of tobacco addiction is reserved for the interaction
between environment and corresponding neural events; i.e.
drug-related cues in the environment are paired with the reward-
ing physiological effects of nicotine. After repeated pairing and
reinforcement of these cues, they become highly salient, trigger-
ing the urge to smoke (Robinson and Berridge 2008; Benowitz
2010). In this process, these motivationally relevant smoking
cues have been shown to automatically and involuntarily cap-
ture the smoker’s selective attention (Mogg and Bradley 2002;
Hogarth et al. 2003; Field and Cox 2008). The resulting atten-
tion bias exhibited by smokers is associated with increased crav-
ing and has been implicated in maintaining addictive behaviour
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and provoking relapses (Bradley et al. 2003; Janes et al. 2010a;
Austin and Duka 2012). Additionally, nicotine abstinence has
been shown to increase subjective craving in response to
smoking cues and enhance attention bias, making it even more
difficult for (ex-)smokers to remain abstinent (Gross et al. 1993;
Sayette and Hufford 1994; Waters and Feyerabend 2000; Zack
et al. 2001; Field et al. 2004). Thus, even existing smoking
cessation treatments will be less effective as long as smokers
are still automatically being attracted to these craving-eliciting
cues. Accordingly, there is a need for new (additional) treat-
ments targeting extinction of automatic responses to smoking
cues. More knowledge about the exact underlying mechanisms
can be essential in the process of developing those.

Functional imaging studies have shown that craving-
provoking drug cues elicit a response in a network of frontal
brain regions, mainly consisting of the amygdala, anterior cingu-
late cortex (ACC), dorsolateral prefrontal cortex (dlPFC) and
orbitofrontal cortex (OFC) (Wilson et al. 2004). This is not sur-
prising, since these areas are connected to the dopaminergic
mesolimbic reward pathway which becomes activated in re-
sponse to actual drug exposure (Brody 2006). The amygdala is
believed to enhance identification of emotionally salient stimuli
(like conditioned drug cues) (Phillips et al. 2003), whereas the
areas in the prefrontal cortex play a key role in the guidance of
goal-directed and motivational behaviour. Specifically, the OFC
is thought to integrate and modulate activity from several limbic
areas (such as the amygdala) involved in reward processing
(Volkow and Fowler 2000), and the dlPFC is implicated in reg-
ulatory processing and decision-making (Watanabe et al. 2002).
The ACC, in addition, has been associated with conflict moni-
toring in the presence of competing response alternatives (Kerns
et al. 2004). Reactivity of these areas to smoking cues may
therefore reflect a process of deciding whether or not to resist
the urge to smoke. Although findings are somewhat inconsistent
across studies, increased activation in response to smoking cues
is mostly reported in brain regions related to reward and motiva-
tional processing as well as in the frontal and parietal attentional
networks (David et al. 2005; Brody et al. 2007; Franklin et al.
2007; Rubinstein et al. 2010; Luijten et al. 2011; Claus et al.
2013). Activation of these regions in response to smoking cues
is evident, since it reflects the rewarding value of the cues and the
motivational and attentional processes guiding drug-seeking be-
haviour (Engelmann et al. 2012).

Nonetheless, these areas are located relatively late in the
pathway through which visual information is processed. That
is, impulses are first transmitted from the primary visual cortex
via the extrastriate cortex to higher-order visual association
areas. From there, projections finally go to multimodal process-
ing regions including the amygdala and prefrontal cortex
(Tanaka 1992). Interestingly, return connections of the amyg-
dala to various levels of the ventral stream are thought to en-
hance sensory processing of emotionally salient stimuli in the
visual cortex (Amaral et al. 2003). So although salience

attribution is situated in higher-processing stages (Goldstein
and Volkow 2011), it may well influence earlier visual process-
ing in a top-down fashion. Even more specifically, a study by
Murray and Wojciulik (2004) has shown that top-down atten-
tion increased not just activity but also neural selectivity in the
lateral occipital complex, a region involved in the visual pro-
cessing of objects and shapes (Murray and Wojciulik 2004).
Thus, one mechanism by which a smoker’s attention could be
biased towards (salient) visual smoking cues may be via in-
creased processing in the extended visual system.

In accordance with this hypothesis, there is some evidence for
increased activation in areas of the primary visual and extrastriate
cortices in response to smoking cues (Due et al. 2002; Janes et al.
2010b; Engelmann et al. 2012; Havermans et al. 2014).
Nevertheless, the evidence remains scarce, and existing theories
on attention bias have explicitly argued for a role of the brain’s
reward pathway and not the extended visual system in this pro-
cess (Everitt andRobbins 2005; Robinson andBerridge 2008). A
reason for the inconclusive neuroimaging evidence for the in-
volvement of the visual system could be that visual processing
of salient smoking cues is only slightly enhanced compared to
neutral cues, since no motivational value has been attributed in
this stage of processing. Standard univariate functional magnetic
resonance imaging (fMRI) analysis techniques might not be suf-
ficiently sensitive to detect such subtle effects. Furthermore, in
several of these cue reactivity studies, the participants had been
smoking before scanning (Janes et al. 2010b; Engelmann et al.
2012). Since smoking cues are of greater salience and relevance
for deprived smokers than for satiated smokers (Robinson and
Berridge 2008), this may have minimized the saliency—and
thereby the enhanced visual processing—of the smoking cues.

In the current study, we use functional MRI and multi-
voxel pattern analysis (MVPA) to investigate basic visual pro-
cessing of smoking-related objects in tobacco-addicted partic-
ipants. This method allows us to consider the pattern of activ-
ity of the total amount of voxels in the lateral occipital com-
plex (LOC), instead of analysing each voxel independently
and looking at the average response of the whole region. By
employing the spatial distribution of neural responses in this
way, pattern analysis techniques are able to pick up informa-
tion that is too subtle to be discovered by traditional univariate
analyses (De Martino et al. 2008; Mur et al. 2009; Mahmoudi
et al. 2012; Tong and Pratte 2012; Woolgar et al. 2016). In the
current study, we use functional MRI and a linear classifica-
tion algorithm (support vector machine (SVM); Cortes and
Vapnik 1995) to investigate whether smoking-related visual
cues are processed differently when a smoker is deprived of
nicotine compared to a satiated state. We investigated the dis-
criminability of neural responses to cigarette images and visu-
ally comparable pencil images immediately after the partici-
pant has smoked a cigarette, and compare this to the discrim-
inability of the responses when the smoker is craving for nic-
otine. We hypothesize that the neural responses will grow
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more distinct for the smoking-related cues in the latter situa-
tion, as these stimuli will be increasingly behaviourally rele-
vant. This in turn would imply that nicotine deprivation in
smokers directly biases early visual object recognition to-
wards smoking-related cues.

Methods

Participants

Fourteen right-handed, current smokers (6 males, mean age
25.21 years) participated in this study. Individuals who report-
ed smoking aminimum of 10 cigarettes a day on average for at
least 1 year were included. Exclusion criteria were history of
physical or mental illness, use of psychotropic medication,
history of drug or alcohol abuse, and contraindications for
theMRI scanner. Participants received financial compensation
for their participation and travel costs. The study was ap-
proved by the Ethical Review Committee Psychology and
Neuroscience of Maastricht University, and written informed
consent was obtained from each participant.

Procedure

Participants were scanned on two occasions. On one occasion,
they were instructed to refrain from smoking for at least 10 h
before the experiment. On the other occasion, participants
were allowed to smoke ad libitum and were specifically asked
to smoke a cigarette just before entering the lab in order to
achieve maximal satiation. The order of the sessions was ran-
domized across subjects. Upon entering the lab, smoking sta-
tus was verified by exhaled carbon monoxide measurement.
In addition, participants reported at what time they had
smoked their most recent cigarette. Furthermore, they filled
out the Fagerström Test for Nicotine Dependence (FTND)
(Heatherton et al. 1991), the Minnesota Nicotine Withdrawal
Scale (MNWS) (Cappelleri et al. 2005) and anMRI eligibility
check.

Localizer run

An independent functional localizer run preceded the exper-
iment to localize object-sensitive regions of the brain.
Participants were presented with 12 blocks of 10-Gy-scale
pictures of common objects and 12 blocks of scrambled
versions of the same pictures, all equalized for luminance.
All pictures were presented for 1200 ms with an inter-
stimulus interval of 600ms. Stimulus blocks were presented
in random order and interleaved with fixation blocks of
12,600 ms.

Experimental run

Stimuli for this run consisted of coloured pictures of ciga-
rettes, pencils and chairs in similar colours, presented centrally
on a white background. Participants were presented with three
runs, consisting of eight blocks of eight pictures of either
cigarettes or pencils or chairs. Pictures were presented for
1500ms with a 50-ms inter-stimulus interval. Stimulus blocks
were presented in random order and interchanged with inter-
vals of 10, 12 or 14 s of rest (see Fig. 1). These intervals
allowed the blood oxygenated level-dependent (BOLD) re-
sponse elicited by the previous stimulus block to return back
to baseline before the onset of the adjacent block. To ensure
attention to the pictures, participants had to respond to catch
trials in which presentation of the preceding picture was
repeated.

Imaging data acquisition

Functional and anatomical images were acquired in a 3-T
Siemens Prisma Scanner (Siemens Medical Solutions,
Germany) using a 64-channel head coil. For the localizer
run, functional images were obtained for 33 contiguous axial
slices (voxel size = 3 × 3 × 3 mm) using a standard gradient
echo planar imaging (EPI) sequence (repetition time
[TR] = 1800ms, echo time [TE]= 30ms,matrix size= 72× 72,
flip angle [FA] = 77°). Functional images for the experimental
runs were also acquired with an EPI sequence (TR = 2000 ms,
TE = 30 ms, matrix size = 72 × 72, FA = 77°), but for 36
contiguous axial slices (voxel size = 3 × 3 × 3 mm). Both
functional measurements covered as much as possible the en-
tire cortical volume. Whole brain structural images were ac-
quired using a 1 × 1 × 1 mm resolution T1-weighted
MPRAGE sequence ([TR] = 2250 ms, [TE] = 2.21 ms,
[FA] = 9°). The first two volumes of all functional runs were
discarded because of possible T1 saturation.

Participants were placed in supine position on the scanner
bed, and their heads were fixated with foam pads. Stimuli were
projected on a screen at the back of the scanner bore, and were
visible to the participants through a mirror attached to the head
coil. Responses were made with a hand-held button box.
Stimulus presentation was accomplished with Presentation
software (Neurobehavioral Systems Inc., Albany, CA) for the
localizer run and E-Prime® (Psychology Software Tools, Inc.
Sharpsburg, PA) for the experimental runs and was synchro-
nized to the MR data acquisition.

Analyses

Imaging data was pre-processed and analysed using
BrainVoyager QX version 2.8 (Brain Innovation, Maastricht,
The Netherlands) and Matlab R2014b (MathWorks Inc.,
Natick, MA). First, functional images were corrected for
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possible susceptibility-induced EPI distortions by using B0
fieldmaps and the BrainVoyager QX plugin anatabacus
(Breman et al. 2009). The functional data were then corrected
for slice scan-time differences and 3D head motion (six pa-
rameters). In order to enhance the subsequent alignment of the
functional images to the anatomical volume, the first and third
runs were corrected with the second run as intra-session ref-
erence, as the acquisition of this run was temporally adjacent
to the anatomical scan. Subsequently, linear trends and low-
frequency temporal drifts were removed from the data using a
high-pass filter, removing temporal frequencies below 6 cycles
per run. The resulting functional data were co-registered to the
anatomical volume and transformed to Talairach space. To
further reduce the effects of motion-related variability
(‘spikes’), a custom Matlab algorithm was applied that for
each volume computed the percentage of voxels exceeded
the voxel mean intensity by more than 4 standard deviations.
Volumes with more than 2% extreme voxels were labelled as
affected by ‘excessive’ motion. These volumes were replaced
by new values derived from a voxel-wise spline interpolation
between the volumes that temporally bordered the removed
volumes. In case the excessive volumes were at the beginning
or end of the run, the volumes were simply removed.

A standard whole brain univariate random effects GLM
analysis was performed to localize bilateral LOC clusters for
each subject. The locations of the object selective regions of
interest (ROIs) were determined based on a conjunction con-
trast and anatomical criteria. We selected voxels within the
bilateral ventral occipito-temporal cortex that showed a signif-
icant response (Bonferroni corrected) in the conjunction anal-
ysis between an object-responsive contrast (objects > scram-
bled objects) and an object-positive contrast (objects >
baseline).

The experimental runs were analysed through a pattern
classification approach (Cox and Savoy 2003) using custom
written code in Matlab. The pseudocode of this analysis is
provided as a supplement. This analysis was confined to the
resulting voxels from the analysis of the localizer run. First,

for each voxel within the region of interest, individual re-
sponses to the experimental blocks were estimated by fitting
a double-gamma haemodynamic response function (HRF) to
the voxel’s time course, using the resulting beta as block esti-
mate. For each ROI and each condition, this resulted in a
matrix with dimensions V ×B, where V represents the number
of voxels, and B stands for the number of blocks. These ma-
trices capture the fine-grained neural information about the
conditions that may be apparent in the response patterns.
The blocks were labelled according to their corresponding
condition (cigarette, pencil, chair) and normalized (z-scored)
so as to obtain a mean response of 0 and standard deviation of
1 across all voxels within our region of interest.

The analysis was run using a leave-1-run-out cross-valida-
tion. This entails that the classification algorithm was trained
on two out of three runs, and its generalization performance
tested on the run that was left out. This procedure is repeated
three times, ensuring that each run is once used for testing,
after which the three prediction accuracies are averaged. First,
for the cigarette and pencil conditions, the dataset was split
into a training set consisting of two runs (i.e. 16 examples) per
condition and a test set consisting of one run (i.e. 8 examples)
per condition. The labelled training trials were submitted to a
linear support vector machine classifier (C = 1) (Cortes and
Vapnik 1995; Mourão-Miranda et al. 2005; Formisano et al.
2008), which performs binary classification on a dataset by
placing all cases in a multidimensional space. Each individual
block (or example) is expressed as a vector of N features
(voxels) in the N-dimensional space. This creates two ‘clouds’
of block vectors in the multidimensional space, one for each
condition tested. The algorithm then attempts to define an
optimal separation boundary, or hyperplane, between the
two classes, given the training data. The generalizability of
the trained classifier is then subsequently assessed by feeding
the independent and unlabelled test blocks from the left-out
run to the algorithm. The accuracy at which the classifier is
able to determine the correct labels from these trials given only
the response patterns is an indication of successful learning of

Fig. 1 Experimental task
paradigm. Participants were
presented with eight stimulus
blocks consisting of eight pictures
of either cigarettes or pencils or
chairs. The stimulus blocks were
presented in random order and
interchanged with intervals of 10,
12 or 14 s of rest
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the algorithm. This, in turn, reflects a meaningful difference in
spatial patterns of neural activity elicited by the two
conditions.

In order to statistically quantify the prediction results, we
empirically estimated the distribution of prediction accuracies
under the null hypothesis by a bootstrapping approach: instead
of training the classifier on voxel patterns and corresponding
class labels, we pseudo randomly assigned the labels to the
patterns (randomization of labels per run). The classifier then
learned the arbitrary relationship between patterns and classes.
By feeding the test trials to the model, we obtained a predic-
tion accuracy under the null hypothesis. Repeating this 1000
times yields the distribution of prediction accuracies under the
null hypothesis. This entire analysis was repeated for the cig-
arette and chair, and pencil and chair classes. Finally, a non-
parametric Wilcoxon signed-rank test (Wilcoxon 1945) was
performed to statistically test the mean prediction accuracies
against the permutations, and to test the difference between
the deprivation and satiation sessions. Resulting p values were
corrected for multiple comparisons by computing the false
discovery rate (FDR) using q = 0.05.

In order to test the variables for possible interaction effects,
we computed the two-way F-statistic using a repeated-
measures ANOVA with the factors deprivation state (2) ×
stimulus type (3). Then, we permuted the 2 × 3 condition
labels across participants and recomputed the F-statistic in
10,000 iterations, creating the distribution of F under the null
hypothesis (Suckling and Bullmore 2004). The probability of
finding the true interaction F-statistic under the assumption
that the H0 is true was subsequently derived from the permut-
ed F-distribution. A priori planned comparisons between the
satiated and deprived conditions were made for each stimulus
category, regardless of the outcome of the corresponding over-
all interaction test. This is a legitimate procedure if the com-
parisons are suggested by the theoretical basis of the experi-
ment (Winer 1971). Access to the Matlab codes used in this
study will be provided upon individual request.

Results

Participant characteristics

Data of four participants had to be discarded because they did
not fully complete all experimental runs. All data reported
regard the final sample of 10 participants. The mean
Fagerström score of our participants was 2.8 (SD = 1.79),
which reflects a low (to moderate) level of smoking depen-
dence (Heatherton et al. 1991). On average, participants
smoked approximately 10 cigarettes a day, and there was no
difference in the number of cigarettes smoked in the weeks
preceding each session (mean deprived = 72.7 SD = 36.73;
mean satiated = 76.1, SD = 35.22; t(18) = −.211, p = .835).

Time since last cigarette ranged from 5 to 50 min
(mean = 17.5 min, SD = 14.77 min) for the satiated session
and from 10 to 19 h (mean = 12.64 h, SD = 2.89 h) for the
deprived session. Exhaled carbon monoxide values were sig-
nificantly lower when participants had been deprived of
smoking (range deprived 0–9, mean = 4.18; range satiated
5–13, mean = 8.00; t(18) = −3.425, p = .004). Scores on the
MNWS did not differ between the two sessions (mean de-
prived = 10.90, SD = 5.80; mean satiated = 10.40,
SD = 6.92; t(18) = .175, ns.). Moreover, participants did not
report more craving after smoking deprivation (as indicated on
a 0–4 scale; mean deprived = 2.20, SD = 0.92; mean satiat-
ed = 1.70, SD = 1.25; t(18) = 1.018, ns.).

Localizer

Significant bilateral LOC clusters were identified in all but
one participant. The average location of these clusters over
all participants is shown in Fig. 2. For one participant, the
specified contrast yielded no significant voxels with and with-
out Bonferroni correction. Therefore, the average location of
left and right LOC of all other participants was used in the
MVPA analysis for this participant. The classification analysis
was performed on both left and right LOC combined, as well
as on separate left and right LOC voxels.

Multi-voxel pattern analysis

Bilateral LOC

Over the voxels of left and right LOC combined, the classifi-
cation algorithm was able to discriminate between patterns of
activity elicited by visually similar smoking-related
(cigarettes) and neutral objects (pencils) above empirically
estimated chance levels only when participants were smoking
deprived (mean = 61.0%, mean permutation = 50.0%, p = .01
(uncorrected, p = .012 FDR-corrected)) but not when they
were satiated (mean = 53.5%, mean permutation = 49.9%,
ns.); see Fig. 3. Moreover, the difference in prediction accu-
racies between the satiated and deprived conditions was sig-
nificantly larger than the difference between the permutation
accuracies of both conditions (accuracies D-S = 7.50, permu-
tations D-S = −0.12, p = .02 (uncorrected, p = .06 FDR-
corrected)). Discrimination between the visually less similar
smoking-related (cigarettes) and neutral (chairs) cues was pos-
sible above permutation chance levels when participants were
deprived (mean = 75.6%, mean permutation = 50.0%,
p = .002 (uncorrected, p = .012 FDR-corrected)) as well as
when they were satiated (mean = 72.5%, mean permuta-
tion = 49.9%, p = .004 (uncorrected, p = .008 FDR-
corrected)), and did not differ between conditions (accuracies
D-S = 3.12, permutations D-S = 0.13, ns.). Similarly, discrim-
ination between two visually distinct neutral objects (pencils,
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chairs) was possible above empirical chance levels during
deprivation (mean = 79.2%, mean permutation = 50.0%,
p = .002 (uncorrected, p = .006 FDR-corrected)) and satiety
(mean = 74.6%, mean permutation = 50.3%, p = .004 (uncor-
rected, p = .006 FDR-corrected)) and also did not differ be-
tween the two conditions (accuracies D-S = 4.58, permuta-
tions D-S = −0.33, ns.). There was no significant interaction
between the two deprivation states and the three stimulus
combinations in bilateral LOC voxels (p > .1).

Left and right LOC

In left LOC, discrimination between response patterns elicited
in response to visually similar smoking-related (cigarettes)
and neutral objects (pencils) was possible above empirically
estimated chance levels when participants were deprived of
smoking (mean = 58.5%, mean permutation = 50%, p = .01
(uncorrected, p = .012 FDR-corrected)), but not when they
were satiated (mean = 52.3%, mean permutation = 50%,
ns.). However, the difference in decoding between the de-
prived and satiated conditions was significantly larger than
the difference in empirically estimated chance levels (accura-
cies D-S = 6.25, permutations D-S = −.03, p = .01 (uncorrect-
ed, p = .06 FDR-corrected)). Moreover, the classifier was able
to discriminate between responses elicited by the visually less
similar smoking-related (cigarettes) and neutral (chairs) cues
above permutation chance levels in the deprived (mean = 75%,
mean permutation = 50%, p = .002 (uncorrected, p = .006
FDR-corrected)) as well as the satiated (mean = 73.3%, mean
permutation = 50%, p = .002 (uncorrected, p = .006 FDR-
corrected)) conditions. In addition, the classifier’s ability to
discriminate between responses to cigarettes and chairs did
not differ between deprivation and satiety (accuracies D-
S = 1.67, permutations D-S = −.04, ns.). Finally, discrimina-
tion between two neutral objects based on responses in left
LOC was possible when participants were satiated (mean
73.1%, mean permutation = 50.0%, p = .004 (uncorrected,
p = .006 FDR-corrected)) and when they were deprived
(mean = 75.8%, mean permutation = 50.0%, p = .002 (uncor-
rected, p = .006 FDR-corrected)). In addition, there was no
significant difference in prediction accuracies for the neutral
contrast (chairs–pencils), between the deprived and satiated

states (accuracies D-S = 2.71, permutations D-S = 0.00, ns.)
There was no significant interaction between the two depriva-
tion states and the three stimulus combinations in left LOC
(p > .1).

In right LOC also, decoding accuracies for the cigarette–
pencil contrast were significantly higher than empirically es-
timated chance levels in both the satiated (mean = 56.3%,
mean permutation = 50.0%, p = .01 (uncorrected, p = .02
FDR-corrected)) and deprived conditions (mean = 61.9%,
mean permutation = 50.0%, p = .004 (uncorrected, p = .006
FDR-corrected)). Moreover, they did not significantly differ
between the conditions (accuracies D-S = 5.63, permutations
D-S = 0.05, ns.). Similarly, discrimination between cigarettes
and chairs was possible above permuted chance levels in sa-
tiated (mean = 69.6%, mean permutations = 50.0%, p = .004
(uncorrected, p = .006 FDR-corrected)) and deprived
(mean = 69.0%, mean permutation = 50.0%, p = .004 (uncor-
rected, p = .006 FDR-corrected)) participants, and did not
differ between conditions (accuracies D-S = −0.63, permuta-
tions D-S = −.01, ns.). Furthermore, the classifier was able to
discriminate between responses in right LOC to two different
neutral objects (pencils and chairs) under conditions of
smoking deprivation (mean = 74%, mean permuta-
tion = 50.0%, p = .004 (uncorrected, p = .006 FDR-corrected))
as well as satiety (mean = 69.2%, mean permutation = 50.0%,

Fig. 2 Average LOC clusters.
Clusters of object-sensitive
voxels within bilateral ventral
occipito-temporal cortex,
averaged over all participants.
Projected on a partially inflated
individual cortex reconstruction

Fig. 3 Classification results of all contrasts over bilateral LOC.
Prediction accuracies for the cigarette vs pencil contrast were
significantly higher when participants were deprived of smoking
(p < .02). No differences between the deprived and satiated conditions
were found for the other condition pairs. Asterisks indicate significant
differences from permuted chance levels
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p = .004 (uncorrected, p = .006 FDR-corrected)). The classi-
fier’s ability to discriminate between two neutral objects did
not differ between the satiated and deprived conditions (accu-
racies D-S = −.63, permutation D-S = 0.03, ns). There was no
significant interaction between the two deprivation states and
the three stimulus combinations in right LOC (p > .1).
Classification results of left and right LOC are depicted in
Fig. 4.

Over all stimulus conditions, we did not find the D-S effect
to be different across hemispheres. Moreover, when we spe-
cifically focussed on the pencil vs cigarette comparison, we
again did not find any significant lateralization effects.

Discussion

This study investigated to what extent nicotine deprivation
affects early visual processing of smoking-related objects.
More specifically, we examined whether the neural represen-
tations of images related to smoking become more apparent
when smokers are in a state of abstinence. By means of multi-
voxel pattern analysis, we demonstrated (1) that we are able to
discriminate between the visually similar categories cigarettes
and pencils above chance level by observing the underlying
patterns of activity in object-sensitive LOC, and (2) that this
discriminability ceases when subjects are satiated. From this,
we conclude that the effect of abstinence on behaviour can at
least be traced back to a basic level of visual object processing.
This indicates that the mechanism by which a smoker’s atten-
tion is biased towards smoking cues potentially affects pro-
cessing in the early visual system, and is not confined to only
higher-order motivation and reward-related areas as is gener-
ally emphasized in the literature (Volkow et al. 2013; Hester
and Luijten 2013; Jasinska et al. 2014). In light of the in-
creased salience of smoking-related cues after nicotine depri-
vation (Robinson and Berridge 2008), our findings offer a

new insight in the possible neural mechanisms that facilitate
this behavioural effect.

However, in light of recent discussions about the interpret-
ability of MVPA results, it is important to note that certain
inferences about the nature of the data are not trivial to make.
For instance, work by Todd and colleagues demonstrates that
since MVPA is insensitive to the directionality of an effect,
group tests on summary statistics can potentially introduce
confounds (Todd et al. 2013). In addition, Davis et al. used
simulations to point out that a significant decoding perfor-
mance does not allow for drawing conclusion about the un-
derlying nature of the representations (Davis et al. 2014).
However, our experimental design is set up to address the
question whether certain neural responses are affected by the
level of nicotine deprivation. Although we cannot draw firm
conclusions on the directionality of the effect, we interpret our
results in light of what is known about the psychological effect
of addictive substances. If the multivariate distance between
two object categories (one of which is related to the addiction)
increases as an effect of nicotine deprivation, it is not the
statistics that drive the interpretation of directionality. Rather,
it is the contextual framing of the study that provides us with a
potential interpretation of these results.

To further support our interpretation, it would be interesting
to compare our results with a non-smoking control group; if
non-smokers would not exhibit a similar difference in
decoding between smoking-related and neutral objects as we
found in smokers, this would confirm our hypothesis that the
difference we found was caused by nicotine deprivation.
However, if they would show a difference in decoding, that
would indicate that this difference is inherently present and
diminishes as a consequence of acute nicotine consumption.

The fact that we only found an effect of nicotine depriva-
tion on neural processing in the cigarette–pencil contrast is
possibly caused by their visually similar appearances. That
is, the other smoking vs neutral stimulus contrast consisted
of cigarettes and chairs, which have much more distinct visual

Fig. 4 Classification results of all contrasts in left and right LOC
separately. In left LOC, decoding accuracies for the cigarette–pencil
contrast were significantly higher in the deprived than in the satiated
condition (p < .01). For all other stimulus contrasts, there was no

difference in discriminability between the deprived and satiated
conditions, in both left and right LOC. Asterisks indicate significant
differences from permuted chance levels
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features. As LOC is specifically sensitive to object shapes
(Grill-Spector et al. 2001; Kim et al. 2009), it is plausible that
the large difference in shapes between cigarettes and chairs
has caused a ceiling effect, due to which differences between
the deprived and satiated conditions could not be demonstrat-
ed. The large dissimilarity in shape is also very likely to be the
reason for the much higher prediction accuracies in the ciga-
rette–chair, as well as the pencil–chair conditions, compared
to the cigarette–pencil condition.

A few considerations should be taken into account with
regard to the design of our study. First of all, our final sample
size of 10 participants is small, even for an fMRI study. Small
samples can be problematic for MVPA as they can lead to
decoding accuracies that overshoot chance level merely by
chance (Combrisson and Jerbi 2015). We therefore chose for
a conservative way to quantify our results: Instead of testing
our classification results against chance level (i.e. 50%), we
have empirically estimated the distribution of prediction accu-
racies when there is no relationship between the conditions
and underlying response patterns. By testing our true predic-
tion accuracy against the accuracies that resulted from this
bootstrapping approach, we overcome this problem.

Secondly, our participants exhibited only low (to moderate)
levels of nicotine dependence, as indicated by their low FTND
scores. Therefore, it is possible that the smoking cues were not
as attractive or attention-grabbing for them as theywould have
been for highly dependent individuals. Hence, for more de-
pendent smokers, patterns of activity related to smoking cues
may have been better discriminable from those related to neu-
tral cues. Moreover, highly dependent smokers would have
been more affected by the nicotine deprivation condition, pos-
sibly increasing discriminability between smoking and neutral
cues in the deprived condition even more. In addition, it is
striking that our deprivation condition was not successful in
inducing craving or other withdrawal symptoms. This could
be due to a too short, and overnight, abstinence period, during
which participants only missed a few cigarettes. For instance,
an abstinence period of 16 h has been shown to reliably induce
craving (Jarvik et al. 2000), while our participants were absti-
nent for only 12 h on average. Although this difference is
small, this indicates that longer periods of abstinence (in
heavier smokers) may lead to more distinct responses to
smoking-related and neutral cues in LOC.

Moreover, differences between participants in metabolism,
patterns of cigarette consumption, smoking history and time
since last cigarette could have introduced significant variabil-
ity due to the acute effects of nicotine. Future studies similar to
ours, analysing subtle differences in processing between
smoking and neutral cues, should control for these factors as
much as possible.

Finally, to control as much as possible for other influences,
we have kept our images of smoking-related and neutral ob-
jects very ‘clean’. They consisted of just one object in a

neutral colour presented centrally on a white background.
This may have made our smoking images less attractive and
interesting to look at than more lifelike images of smoking
scenes in which people enjoy smoking cigarettes. Moreover,
the fact that our images did not reflect actual smoking scenes
may have compromised the ecologic validity of the study.

Nevertheless, we have established that neural response pat-
terns in left LOC differ for smoking-related and neutral pic-
tures when participants were deprived of nicotine. This indi-
cates that the well-known attention bias that has often been
reported in smokers likely affects basic visual object process-
ing. This finding may provide a new target for smoking ces-
sation interventions; for instance, non-invasive brain stimula-
tion techniques may be used to manipulate brain activity in
LOC. Moreover, it shows that treatment interventions should
not just aim to eliminate craving elicited by smoking cues, but
should specifically focus on extinction of automatic responses
to these cues.
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