56 research outputs found

    Global methylation in relation to methotrexate-induced oral mucositis in children with acute lymphoblastic leukemia

    Get PDF
    Background Children with acute lymphoblastic leukemia (ALL) often suffer from toxicity of chemotherapeutic drugs such as Methotrexate (MTX). Previously, we reported that 20% of patients receiving high-dose MTX developed oral mucositis. MTX inhibits folate metabolism, which is essential for DNA methylation. We hypothesize that MTX inhibits DNA methylation, which results into adverse effects. We studied DNA methylation markers during high-dose methotrexate treatment in pediatric acute lymphoblastic leukemia (ALL) in relation to developing oral mucositis. Materials & methods S-Adenosyl-Methionine (SAM) and S-Adenosyl-Homocysteine (SAH) levels and LINE1 DNA methylation were measured prospectively before and after high-dose methotrexate (HD-MTX 4 x 5g/m2) therapy in 82 children with ALL. Methotrexate-induced oral mucositis was registered prospectively. Oral mucositis (grade 3 National Cancer Institute Criteria) was used as clinical endpoint. Results SAM levels decreased significantly during methotrexate therapy (-16.1 nmol/L (-144.0 – +46.0), p<0.001), while SAH levels and the SAM:SAH ratio did not change significantly. LINE1 DNA methylation (+1.4% (-1.1 –+6.5), p<0.001) increased during therapy. SAM and SAH levels were not correlated to LINE1 DNA methylation status. No association was found between DNA methylation markers and developing oral mucositis. Conclusions This was the first study that assessed DNA methylation in relation to MTX-induced oral mucositis in children with ALL. Although global methylation markers did change during methotrexate therapy, methylation status was not associated with developing oral mucositis

    Epidemiology and Outcome of Critically Ill Pediatric Cancer and Hematopoietic Stem Cell Transplant Patients Requiring Continuous Renal Replacement Therapy:A Retrospective Nationwide Cohort Study

    Get PDF
    OBJECTIVE: Acute kidney injury requiring continuous renal replacement therapy is a serious treatment-related complication in pediatric cancer and hematopoietic stem cell transplant patients. The purpose of this study was to assess epidemiology and outcome of these patients requiring continuous renal replacement therapy in the PICU. DESIGN: A nationwide, multicenter, retrospective, observational study. SETTING: Eight PICUs of a tertiary care hospitals in the Netherlands. PATIENTS: Pediatric cancer and hematopoietic stem cell transplant patients (cancer and noncancer) who received continuous renal replacement therapy from January 2006 to July 2017 in the Netherlands.None. MEASUREMENT AND MAIN RESULTS: Of 1,927 PICU admissions of pediatric cancer and hematopoietic stem cell transplant patients, 68 of 70 evaluable patients who received continuous renal replacement therapy were included. Raw PICU mortality was 11.2% (216/1,972 admissions). PICU mortality of patients requiring continuous renal replacement therapy was 54.4% (37/68 patients). Fluid overload (odds ratio, 1.08; 95% CI, 1.01-1.17) and need for inotropic support (odds ratio, 6.53; 95% CI, 1.86-23.08) at the start of continuous renal replacement therapy were associated with PICU mortality. Serum creatinine levels increased above 150% of baseline 3 days before the start of continuous renal replacement therapy. Urine production did not reach the critical limit of oliguria. In contrast, body weight (fluid overload) increased already 5 days prior to continuous renal replacement therapy initiation. CONCLUSIONS: PICU mortality of pediatric cancer and hematopoietic stem cell transplant patients requiring continuous renal replacement therapy is sadly high. Fluid overload at the initiation of continuous renal replacement therapy is the most important and earliest predictor of PICU mortality. Our results suggest that the most commonly used criteria of acute kidney injury, that is, serum creatinine and urine production, are not useful as a trigger to initiate continuous renal replacement therapy. This highlights the urgent need for prospective studies to generate recommendations for effective therapeutic interventions at an early phase in this specific patient population

    Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death

    Get PDF
    Background: In chronic liver disease, hepatic stellate cells (HSCs) are activated, highly proliferative and produce excessive amounts of extracellular matrix, leading to liver fibrosis. Elevated levels of toxic reactive oxygen species (ROS) produced during chronic liver injury have been implicated in this activation process. Therefore, activated hepatic stellate cells need to harbor highly effective anti-oxidants to protect against the toxic effects of ROS.Aim: To investigate the protective mechanisms of activated HSCs against ROS-induced toxicity.Methods: Culture-activated rat HSCs were exposed to hydrogen peroxide. Necrosis and apoptosis were determined by Sytox Green or acridine orange staining, respectively. The hydrogen peroxide detoxifying enzymes catalase and glutathione-pefoxidase (GPx) were inhibited using 3-amino-1,2,4-triazole and mercaptosuccinic acid, respectively. The anti-oxidant glutathione was depleted by L-buthionine-sulfoximine and repleted with the GSH-analogue GSH-monoethylester (GSH-MEE).Results: Upon activation, HSCs increase their cellular glutathione content and GPx expression, while MnSOD (both at mRNA and protein level) and catalase (at the protein level, but not at the mRNA level) decreased. Hydrogen peroxide did not induce cell death in activated HSCs. Glutathione depletion increased the sensitivity of HSCs to hydrogen peroxide, resulting in 35% and 75% necrotic cells at 0.2 and 1 mmol/L hydrogen peroxide, respectively. The sensitizing effect was abolished by GSH-MEE. Inhibition of catalase or GPx significantly increased hydrogen peroxide-induced apoptosis, which was not reversed by GSH-MEE.Conclusion: Activated HSCs have increased ROS-detoxifying capacity compared to quiescent HSCs. Glutathione levels increase during HSC activation and protect against ROS-induced necrosis, whereas hydrogen peroxide-detoxifying enzymes protect against apoptotic cell death. (C) 2013 Elsevier B.V. All rights reserved.</p

    Guideline implementation, drug sequencing, and quality of care in heart failure:design and rationale of TITRATE-HF

    Get PDF
    Aims: Current heart failure (HF) guidelines recommend to prescribe four drug classes in patients with HF with reduced ejection fraction (HFrEF). A clear challenge exists to adequately implement guideline-directed medical therapy (GDMT) regarding the sequencing of drugs and timely reaching target dose. It is largely unknown how the paradigm shift from a serial and sequential approach for drug therapy to early parallel application of the four drug classes will be executed in daily clinical practice, as well as the reason clinicians may not adhere to new guidelines. We present the design and rationale for the real-world TITRATE-HF study, which aims to assess sequencing strategies for GDMT initiation, dose titration patterns (order and speed), intolerance for GDMT, barriers for implementation, and long-term outcomes in patients with de novo, chronic, and worsening HF. Methods and results: A total of 4000 patients with HFrEF, HF with mildly reduced ejection fraction, and HF with improved ejection fraction will be enrolled in &gt;40 Dutch centres with a follow-up of at least 3 years. Data collection will include demographics, physical examination and vital parameters, electrocardiogram, laboratory measurements, echocardiogram, medication, and quality of life. Detailed information on titration steps will be collected for the four GDMT drug classes. Information will include date, primary reason for change, and potential intolerances. The primary clinical endpoints are HF-related hospitalizations, HF-related urgent visits with a need for intravenous diuretics, all-cause mortality, and cardiovascular mortality. Conclusions: TITRATE-HF is a real-world multicentre longitudinal registry that will provide unique information on contemporary GDMT implementation, sequencing strategies (order and speed), and prognosis in de novo, worsening, and chronic HF patients.</p

    Vitamin B12 intake from animal foods, biomarkers, and health aspects

    Get PDF
    The EAT-Lancet commission recently suggested that transformation to healthy diets by 2050 will require a reduction of at least 50% in consumption of foods such as red meat and sugar, and a doubling in the global consumption of fruits, vegetables, nuts, and legumes. A diet rich in plant-based foods and with fewer animal source foods confers both improved health and environmental benefits. Notably, the risk of vitamin B12 deficiency increases when consuming a diet low in animal products. Humans are dependent on animal foods such as dairy products, meat, fish and eggs. Vitamin B12 deficiency is common worldwide, especially in populations with low consumption of animal foods because of low socioeconomic status, ethical reasons, or because of their lifestyle (i.e., vegans). According to the European Food Safety Authoroty, the recommended adequate intake of vitamin B12 is 4.0 µg/d for adults, and vitamin B12 requirements are higher during pregnancy and lactation. Infants and children from deficient mothers and elderly people are at risk for vitamin B12 deficiency. Diagnosis of vitamin B12 deficiency is hampered by low specificity of available biomarkers, and there is no consensus yet regarding the optimal definition of low vitamin B12 status. In general, a combination of at least two biomarkers is recommended. Therefore, this review presents an overview of vitamin B12 biochemistry and its biomarkers. We further summarize current recommendations of vitamin B12 intake, and evidence on the a

    ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes

    Get PDF
    Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we combine patient-derived and mouse models to dissect the effects of ATXN2 intermediate expansions in an ALS background. iPSC-derived motor neurons from ATXN2-ALS patients show altered stress granules, neurite damage and abnormal electrophysiological properties compared to healthy control and other familial ALS mutations. In TDP-43Tg-ALS mice, ATXN2-Q33 causes reduced motor function, NMJ alterations, neuron degeneration and altered in vitro stress granule dynamics. Furthermore, gene expression changes related to mitochondrial function and inflammatory response are detected and confirmed at the cellular level in mice and human neuron and organoid models. Together, these results define pathogenic defects underlying ATXN2-ALS and provide a framework for future research into ATXN2-dependent pathogenesis and therapy

    Workgroup Report: Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity into International Hazard and Risk Assessment Strategies

    Get PDF
    This is the report of the first workshop on Incorporating In Vitro Alternative Methods for Developmental Neurotoxicity (DNT) Testing into International Hazard and Risk Assessment Strategies, held in Ispra, Italy, on 19–21 April 2005. The workshop was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) and jointly organized by ECVAM, the European Chemical Industry Council, and the Johns Hopkins University Center for Alternatives to Animal Testing. The primary aim of the workshop was to identify and catalog potential methods that could be used to assess how data from in vitro alternative methods could help to predict and identify DNT hazards. Working groups focused on two different aspects: a) details on the science available in the field of DNT, including discussions on the models available to capture the critical DNT mechanisms and processes, and b) policy and strategy aspects to assess the integration of alternative methods in a regulatory framework. This report summarizes these discussions and details the recommendations and priorities for future work

    Brain activation of the defensive and appetitive survival systems in obsessive compulsive disorder

    Get PDF
    Several studies have shown that basic emotions are responsible for a significant enhancement of early visual processes and increased activation in visual processing brain regions. It may be possible that the cognitive uncertainty and repeated behavioral checking evident in Obsessive Compulsive Disorder (OCD) is due to the existence of abnormalities in basic survival circuits, particularly those associated with the visual processing of the physical characteristics of emotional-laden stimuli. The objective of the present study was to test if patients with OCD show evidence of altered basic survival circuits, particularly those associated with the visual processing of the physical characteristics of emotional stimuli. Fifteen patients with OCD and 12 healthy controls underwent functional magnetic resonance imaging acquisition while being exposed to emotional pictures, with different levels of arousal, intended to trigger the defensive and appetitive basic survival circuits. Overall, the present results seem to indicate dissociation in the activity of the defense and appetitive survival systems in OCD. Results suggest that the clinical group reacts to basic threat with a strong activation of the defensive system mobilizing widespread brain networks (i.e., frontal, temporal, occipital-parietal, and subcortical nucleus) and blocking the activation of the appetitive system when facing positive emotional triggers from the initial stages of visual processing (i.e., superior occipital gyrus)
    corecore