53 research outputs found

    Light-Triggered Cellular Delivery of Oligonucleotides

    Get PDF
    The major challenge in the therapeutic applicability of oligonucleotide-based drugs is the development of efficient and safe delivery systems. The carriers should be non-toxic and stable in vivo, but interact with the target cells and release the loaded oligonucleotides intracellularly. We approached this challenge by developing a light-triggered liposomal delivery system for oligonucleotides based on a non-cationic and thermosensitive liposome with indocyanine green (ICG) as photosensitizer. The liposomes had efficient release properties, as 90% of the encapsulated oligonucleotides were released after 1-minute light exposure. Cell studies using an enhanced green fluorescent protein (EGFP)-based splicing assay with HeLa cells showed light-activated transfection with up to 70%–80% efficacy. Moreover, free ICG and oligonucleotides in solution transfected cells upon light induction with similar efficacy as the liposomal system. The light-triggered delivery induced moderate cytotoxicity (25%–35% reduction in cell viability) 1–2 days after transfection, but the cell growth returned to control levels in 4 days. In conclusion, the ICG-based light-triggered delivery is a promising method for oligonucleotides, and it can be used as a platform for further optimization and development

    Correction to "Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission"

    Get PDF
    Correction to “Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission

    Coiled coil interactions for the targeting of liposomes for nucleic acid delivery

    No full text
    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner

    Coiled coil interactions for the targeting of liposomes for nucleic acid delivery

    Get PDF
    Coiled coil interactions are strong protein-protein interactions that are involved in many biological processes, including intracellular trafficking and membrane fusion. A synthetic heterodimeric coiled-coil forming peptide pair, known as E3 (EIAALEK)3 and K3 (KIAALKE)3 was used to functionalize liposomes encapsulating a splice correcting oligonucleotide or siRNA. These peptide-functionalized vesicles are highly stable in solution but start to cluster when vesicles modified with complementary peptides are mixed together, demonstrating that the peptides quickly coil and crosslink the vesicles. When one of the peptides was anchored to the cell membrane using a hydrophobic cholesterol anchor, vesicles functionalized with the complementary peptide could be docked to these cells, whereas non-functionalized cells did not show any vesicle tethering. Although the anchored peptides do not have a downstream signaling pathway, microscopy pictures revealed that after four hours, the majority of the docked vesicles were internalized by endocytosis. Finally, for the first time, it was shown that the coiled coil assembly at the interface between the vesicles and the cell membrane induces active uptake and leads to cytosolic delivery of the nucleic acid cargo. Both the siRNA and the splice correcting oligonucleotide were functionally delivered, resulting respectively in the silencing or recovery of luciferase expression in the appropriate cell lines. These results demonstrate that the docking to the cell by coiled coil interaction can induce active uptake and achieve the successful intracellular delivery of otherwise membrane impermeable nucleic acids in a highly specific manner

    Preclinical evaluation of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-grafted liposomes for cancer thermochemotherapy

    No full text
    Thermosensitive liposomes grafted with cholesterol-conjugated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) (chol-pHPMAlac) have been developed for heat-induced release of doxorubicin (DOX). These liposomes release DOX completely during mild hyperthermia, but their interaction with blood cells and cancer cells has not been studied. Following intravenous administration, liposomes may interact with plasma proteins and various types of cells (e.g., endothelial cells, platelets, and macrophages), which would reduce their disposition in the tumor stroma. Interaction between liposomes and platelets may further cause platelet activation and thrombosis, which could lead to vascular occlusion and thromboembolic complications. The aim was to investigate DOX release kinetics in the presence of serum, stability, in vitro uptake by and toxicity to cancer cells and somatic cells, and platelet activating potential of the chol-pHPMAlac liposomes. DOX release was determined spectrofluorometrically. Liposome stability was determined in buffer and serum by dynamic light scattering and nanoparticle tracking analysis. Association with/uptake by and toxicity of empty liposomes to AML-12, HepG2 (both hepatocyte-derived cancer cells), RAW 264.7 (macrophages), and HUVEC (endothelial) cells was assayed in vitro. Platelet activation was determined by analysis of P-selectin expression and fibrinogen binding. DOPE:EPC liposomes (diameter = 135 nm) grafted with 5% chol-pHPMAlac (cloud point (CP) = 16 °C; Mn = 8.5 kDa) released less than 10% DOX at 37 °C in 30 min, whereas complete release took place at 47 °C or higher within 10 min. The size of these liposomes remained stable in buffer and serum during 24 h at 37 °C. Fluorescently labeled but DOX-lacking chol-pHPMAlac-liposomes exhibited poor association with/uptake by all cells under investigation, were not cytotoxic, and did not activate platelets in both buffered solution and whole blood. In conclusion, thermosensitive chol-pHPMAlac-grafted liposomes rapidly release DOX during mild hyperthermia. The liposomes are stable in a physiological milieu, are not taken up by cells that are encountered in an in vivo setting, and are non-antagonistic towards platelets. Chol-pHPMAlac-grafted liposomes are therefore good candidates for DOX delivery to tumors and temperature-triggered release in tumor stroma

    Preclinical evaluation of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-grafted liposomes for cancer thermochemotherapy

    No full text
    Thermosensitive liposomes grafted with cholesterol-conjugated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) (chol-pHPMAlac) have been developed for heat-induced release of doxorubicin (DOX). These liposomes release DOX completely during mild hyperthermia, but their interaction with blood cells and cancer cells has not been studied. Following intravenous administration, liposomes may interact with plasma proteins and various types of cells (e.g., endothelial cells, platelets, and macrophages), which would reduce their disposition in the tumor stroma. Interaction between liposomes and platelets may further cause platelet activation and thrombosis, which could lead to vascular occlusion and thromboembolic complications. The aim was to investigate DOX release kinetics in the presence of serum, stability, in vitro uptake by and toxicity to cancer cells and somatic cells, and platelet activating potential of the chol-pHPMAlac liposomes. DOX release was determined spectrofluorometrically. Liposome stability was determined in buffer and serum by dynamic light scattering and nanoparticle tracking analysis. Association with/uptake by and toxicity of empty liposomes to AML-12, HepG2 (both hepatocyte-derived cancer cells), RAW 264.7 (macrophages), and HUVEC (endothelial) cells was assayed in vitro. Platelet activation was determined by analysis of P-selectin expression and fibrinogen binding. DOPE:EPC liposomes (diameter = 135 nm) grafted with 5% chol-pHPMAlac (cloud point (CP) = 16 °C; Mn = 8.5 kDa) released less than 10% DOX at 37 °C in 30 min, whereas complete release took place at 47 °C or higher within 10 min. The size of these liposomes remained stable in buffer and serum during 24 h at 37 °C. Fluorescently labeled but DOX-lacking chol-pHPMAlac-liposomes exhibited poor association with/uptake by all cells under investigation, were not cytotoxic, and did not activate platelets in both buffered solution and whole blood. In conclusion, thermosensitive chol-pHPMAlac-grafted liposomes rapidly release DOX during mild hyperthermia. The liposomes are stable in a physiological milieu, are not taken up by cells that are encountered in an in vivo setting, and are non-antagonistic towards platelets. Chol-pHPMAlac-grafted liposomes are therefore good candidates for DOX delivery to tumors and temperature-triggered release in tumor stroma

    Identification of a family of animal sphingomyelin synthases

    No full text
    Sphingomyelin (SM) is a major component of animal plasma membranes. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, yielding diacylglycerol as a side product. This reaction is catalysed by SM synthase, an enzyme whose biological potential can be judged from the roles of diacylglycerol and ceramide as anti- and proapoptotic stimuli, respectively. SM synthesis occurs in the lumen of the Golgi as well as on the cell surface. As no gene for SM synthase has been cloned so far, it is unclear whether different enzymes are present at these locations. Using a functional cloning strategy in yeast, we identified a novel family of integral membrane proteins exhibiting all enzymatic features previously attributed to animal SM synthase. Strikingly, human, mouse and Caenorhabditis elegans genomes each contain at least two different SM synthase (SMS) genes. Whereas human SMS1 is localised to the Golgi, SMS2 resides primarily at the plasma membrane. Collectively, these findings open up important new avenues for studying sphingolipid function in animals

    Small nanosized poly(vinyl benzyl trimethylammonium chloride) based polyplexes for siRNA delivery

    No full text
    The success of siRNA gene therapy requires the availability of safe and efficient delivery systems. In the present study, we investigated poly(vinyl benzyl trimethylammonium chloride) (PVTC) and its block copolymer with poly(oligo(ethyleneglycol) methacrylate) (POEGMA) as delivery vector for siRNA. Small polyplexes ranging from 8 to 25 nm in diameter were formed in aqueous solution by spontaneous self-assembly of both the homopolymer and block copolymer with siRNA and the formed particles were stable at physiological ionic strength. It was shown that when human ovarian adenocarcinoma cells were transfected, siRNA polyplexes based on PVTC (40 kDa) and PVTC-POEGMA-4 (PP4, 34 kDa) efficiently induced luciferase gene silencing to the same extent as the formulation based on a commercial lipid (Lipofectamine®) (∼80%), and showed higher gene silencing than the linear polyethylenimine formulation linear polyethylenimine (∼35%). Importantly, the POEGMA block polymers displayed a significantly lower cytotoxicity as compared to L-pEI. siRNA polyplexes based on the block polymers displayed high cellular uptake resulting in ∼50% silencing of luciferase expression also in the presence of serum. These results demonstrate that PVTC-based polymers are promising siRNA delivery vectors

    Preclinical evaluation of thermosensitive poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate)-grafted liposomes for cancer thermochemotherapy

    No full text
    Thermosensitive liposomes grafted with cholesterol-conjugated poly(N-(2-hydroxypropyl) methacrylamide mono/dilactate) (chol-pHPMAlac) have been developed for heat-induced release of doxorubicin (DOX). These liposomes release DOX completely during mild hyperthermia, but their interaction with blood cells and cancer cells has not been studied. Following intravenous administration, liposomes may interact with plasma proteins and various types of cells (e.g., endothelial cells, platelets, and macrophages), which would reduce their disposition in the tumor stroma. Interaction between liposomes and platelets may further cause platelet activation and thrombosis, which could lead to vascular occlusion and thromboembolic complications. The aim was to investigate DOX release kinetics in the presence of serum, stability, in vitro uptake by and toxicity to cancer cells and somatic cells, and platelet activating potential of the chol-pHPMAlac liposomes. DOX release was determined spectrofluorometrically. Liposome stability was determined in buffer and serum by dynamic light scattering and nanoparticle tracking analysis. Association with/uptake by and toxicity of empty liposomes to AML-12, HepG2 (both hepatocyte-derived cancer cells), RAW 264.7 (macrophages), and HUVEC (endothelial) cells was assayed in vitro. Platelet activation was determined by analysis of P-selectin expression and fibrinogen binding. DOPE:EPC liposomes (diameter = 135 nm) grafted with 5% chol-pHPMAlac (cloud point (CP) = 16 °C; Mn = 8.5 kDa) released less than 10% DOX at 37 °C in 30 min, whereas complete release took place at 47 °C or higher within 10 min. The size of these liposomes remained stable in buffer and serum during 24 h at 37 °C. Fluorescently labeled but DOX-lacking chol-pHPMAlac-liposomes exhibited poor association with/uptake by all cells under investigation, were not cytotoxic, and did not activate platelets in both buffered solution and whole blood. In conclusion, thermosensitive chol-pHPMAlac-grafted liposomes rapidly release DOX during mild hyperthermia. The liposomes are stable in a physiological milieu, are not taken up by cells that are encountered in an in vivo setting, and are non-antagonistic towards platelets. Chol-pHPMAlac-grafted liposomes are therefore good candidates for DOX delivery to tumors and temperature-triggered release in tumor stroma

    Impact of chemistry and nanoformulation parameters on cellular uptake and airway distribution of RNA oligonucleotides

    Get PDF
    Small, synthetic oligonucleotides (ON) are of great interest as potential disease modifying drugs, mainly because of their ability to modulate previously undruggable target mutations. To date, therapeutic applications of ON are, however, limited by their physicochemical properties, including poor stability, rapid excretion and low intracellular access. In order to overcome some of these shortcomings, ON are generally formulated using nanoparticle (NP) delivery systems. Alternatively, the poor stability can be circumvented by including chemical modifications to the backbone or sugars of the ON. Some of these modifications also result in better intracellular target access of these otherwise membrane-impermeable macromolecules. Therefore, complex formulation of ON into NP in order to overcome the hurdle of intracellular access might not always be needed, especially in case of local delivery. In this study, the delivery and functionality of chemically modified ON in free form was compared to polymeric NP assisted delivery, measuring their effectivity and efficiency. For this reason, phosphorothioate (PS) backbone-modified 18-mer ON with either 2'OMe or 2'MOE-modifications were selected, capable of eliciting exon-skipping of an aberrant exon in fluorescence based in vitro and in vivo model systems. The NP consisted of poly(D,L-lactic,co-glycolic acid) and poly-β-amino-ester, previously demonstrated to successfully deliver nucleic acids via the pulmonary route. Several NP formulation parameters were tested in order to optimize the delivery of the ON, including ratio polymer:ON, NP size and concentration. The results reported here show clear differences between gymnotic and nanoparticle mediated ON delivery in terms of cellular uptake and local tissue distribution. In vitro, differences in exon-skipping efficiencies were observed with 2'OMe and 2'MOE ON either in free form or formulated in NP, with the striking observation that 2'OMe ON formulated in polymeric NP did not result in exon skipping. Gymnotic delivery of 2'MOE ON into the respiratory tract of mice resulted in functional delivery of exon-skipping ON into nasal epithelia and lungs as well as other downstream tissues and organs, pointing towards a gradual redistribution of locally delivered ONs, with limited but measurable systemic exposure. Conversely, NP-mediated delivery into the respiratory tract resulted in a more contained functional delivery at 10× lower ON doses compared to gymnotic delivery. Based on these findings we conclude that gymnotic delivery of 2'OMe or 2'MOE exon-skipping ON to the respiratory tract is effective, but that NP formulation might be advantageous in case spread of ON to non-target tissue can lead to undesired effects
    • …
    corecore