87 research outputs found

    Fetal sex determination in twin pregnancies using non-invasive prenatal testing

    Get PDF
    Non-invasive prenatal testing (NIPT) is accurate for fetal sex determination in singleton pregnancies, but its accuracy is not well established in twin pregnancies. Here, we present an accurate sex prediction model to discriminate fetal sex in both dichorionic diamniotic (DCDA) and monochorionic diamniotic/monochorionic monoamniotic (MCDA/MCMA) twin pregnancies. A retrospective analysis was performed using a total of 198 twin pregnancies with documented sex. The prediction was based on a multinomial logistic regression using the normalized frequency of X and Y chromosomes, and fetal fraction estimation. A second-step regression analysis was applied when one or both twins were predicted to be male. The model determines fetal sex with 100% sensitivity and specificity when both twins are female, and with 98% sensitivity and 95% specificity when a male is present. Since sex determination can be clinically important, implementing fetal sex determination in twins will improve overall twin pregnancies management

    Waarnemingen.be : non-native plant and animal occurrences in Flanders and the Brussels Capital Region, Belgium

    Get PDF
    Citizen scientists make important contributions to the collection of occurrence data of non-native species. We present two datasets comprising more than 520,000 records of 1,771 non-native species from Flanders and the Brussels Capital Region in Belgium, Western Europe, collected through the website http://www.waamemingen.be hosted by Stichting Natuurinformatie and managed by the nature conservation NGO Natuurpunt. Most records were collected by citizen scientists, mainly since 2008. Waarnemingen.be aims at recording all species, native and non-native, and it is shown here that this kind of biodiversity portals are also particularly well suited to collect large amounts of data on non-native species. Both datasets presented here are also discoverable through the Global Biodiversity Information Facility (GBIF)

    Genome-wide haplotyping embryos developing from 0PN and 1PN zygotes increases transferrable embryos in PGT-M.

    Get PDF
    STUDY QUESTION Can genome-wide haplotyping increase success following preimplantation genetic testing for a monogenic disorder (PGT-M) by including zygotes with absence of pronuclei (0PN) or the presence of only one pronucleus (1PN)? SUMMARY ANSWER Genome-wide haplotyping 0PNs and 1PNs increases the number of PGT-M cycles reaching embryo transfer (ET) by 81% and the live-birth rate by 75%. WHAT IS KNOWN ALREADY Although a significant subset of 0PN and 1PN zygotes can develop into balanced, diploid and developmentally competent embryos, they are usually discarded because parental diploidy detection is not part of the routine work-up of PGT-M. STUDY DESIGN, SIZE, DURATION This prospective cohort study evaluated the pronuclear number in 2229 zygotes from 2337 injected metaphase II (MII) oocytes in 268 cycles. PGT-M for 0PN and 1PN embryos developing into Day 5/6 blastocysts with adequate quality for vitrification was performed in 42 of the 268 cycles (15.7%). In these 42 cycles, we genome-wide haplotyped 216 good quality embryos corresponding to 49 0PNs, 15 1PNs and 152 2PNs. The reported outcomes include parental contribution to embryonic ploidy, embryonic aneuploidy, genetic diagnosis for the monogenic disorder, cycles reaching ETs, pregnancy and live birth rates (LBR) for unaffected offspring. PARTICIPANTS/MATERIALS, SETTING, METHODS Blastomere DNA was whole-genome amplified and hybridized on the Illumina Human CytoSNP12V2.1.1 BeadChip arrays. Subsequently, genome-wide haplotyping and copy-number profiling was applied to investigate the embryonic genome architecture. Bi-parental, unaffected embryos were transferred regardless of their initial zygotic PN score. MAIN RESULTS AND THE ROLE OF CHANCE A staggering 75.51% of 0PN and 42.86% of 1PN blastocysts are diploid bi-parental allowing accurate genetic diagnosis for the monogenic disorder. In total, 31% (13/42) of the PGT-M cycles reached ET or could repeat ET with an unaffected 0PN or 1PN embryo. The LBR per initiated cycle increased from 9.52 to 16.67%. LIMITATIONS, REASONS FOR CAUTION The clinical efficacy of the routine inclusion of 0PN and 1PN zygotes in PGT-M cycles should be confirmed in larger cohorts from multicenter studies. WIDER IMPLICATIONS OF THE FINDINGS Genome-wide haplotyping allows the inclusion of 0PN and 1PN embryos and subsequently increases the cycles reaching ET following PGT-M and potentially PGT for aneuploidy (PGT-A) and chromosomal structural rearrangements (PGT-SR). Establishing measures of clinical efficacy could lead to an update of the ESHRE guidelines which advise against the use of these zygotes. STUDY FUNDING/COMPETING INTEREST(S) SymBioSys (PFV/10/016 and C1/018 to J.R.V. and T.V.), the Horizon 2020 WIDENLIFE: 692065 to J.R.V., T.V., E.D., A.D. and M.Z.E. M.Z.E., T.V. and J.R.V. co-invented haplarithmisis (‘Haplotyping and copy-number typing using polymorphic variant allelic frequencies’), which has been licensed to Agilent Technologies. H.M. is fully supported by the (FWO) (ZKD1543-ASP/16). The authors have no competing interests to declare

    Development of a toolkit to improve interprofessional collaboration and integration in primary care using qualitative interviews and co-design workshops

    Get PDF
    BackgroundDespite numerous attempts to improve interprofessional collaboration and integration (IPCI) in primary care, patients, care providers, researchers, and governments are still looking for tools and guidance to do this more efficiently. To address these issues, we decided to develop a generic toolkit, based on sociocracy and psychological safety principles, to guide care providers in their collaboration within and outside their practice. Finally, we reasoned that, in order to obtain integrated primary care, different strategies should be combined.MethodsDevelopment of the toolkit consisted of a multiyear co-development process. Data originating from 65 care providers, through 13 in-depth interviews and five focus groups were analysed and subsequently evaluated in eight co-design workshop sessions, organised with a total of 40 academics, lecturers, care providers and members of the Flemish patient association. Findings from the qualitative interviews and co-design workshops were gradually, and inductively adapted and transformed into the content for the IPCI toolkit.ResultsTen themes were identified: (i) awareness of the importance of interprofessional collaboration, (ii) the need for a self-assessment tool to measure team performance, (iii) preparing a team to use the toolkit, (iv) enhancing psychological safety, (v) developing and determining consultation techniques, (vi) shared decision making, (vii) developing workgroups to tackle specific (neighbourhood) problems, (viii) how to work patient-centred, (ix) how to integrate a new team member, and (x) getting ready to implement the IPCI toolkit. From these themes, we developed a generic toolkit, consisting of eight modules.ConclusionIn this paper, we describe the multiyear co-development process of a generic toolkit for the improvement of interprofessional collaboration. Inspired by a mix of interventions from in and outside healthcare, a modular open toolkit was produced that includes aspects of Sociocracy, concepts as psychological safety, a self-assessment tool and other modules concerned with meetings, decision-making, integrating new team members and population health. Upon implementation, evaluation and further development and improvement, this compounded intervention should have a beneficial effect on the complex problem of interprofessional collaboration in primary care

    Balanced chromosomal rearrangements offer insights into coding and noncoding genomic features associated with developmental disorders

    Full text link
    Balanced chromosomal rearrangements (BCRs), including inversions, translocations, and insertions, reorganize large sections of the genome and contribute substantial risk for developmental disorders (DDs). However, the rarity and lack of systematic screening for BCRs in the population has precluded unbiased analyses of the genomic features and mechanisms associated with risk for DDs versus normal developmental outcomes. Here, we sequenced and analyzed 1,420 BCR breakpoints across 710 individuals, including 406 DD cases and the first large-scale collection of 304 control BCR carriers. We found that BCRs were not more likely to disrupt genes in DD cases than controls, but were seven-fold more likely to disrupt genes associated with dominant DDs (21.3% of cases vs. 3.4% of controls; P = 1.60×1012^{−12}). Moreover, BCRs that did not disrupt a known DD gene were significantly enriched for breakpoints that altered topologically associated domains (TADs) containing dominant DD genes in cases compared to controls (odds ratio [OR] = 1.43, P = 0.036). We discovered six TADs enriched for noncoding BCRs (false discovery rate < 0.1) that contained known DD genes (MEF2C, FOXG1, SOX9, BCL11A, BCL11B, and SATB2) and represent candidate pathogenic long-range positional effect (LRPE) loci. These six TADs were collectively disrupted in 7.4% of the DD cohort. Phased Hi-C analyses of five cases with noncoding BCR breakpoints localized to one of these putative LRPEs, the 5q14.3 TAD encompassing MEF2C, confirmed extensive disruption to local 3D chromatin structures and reduced frequency of contact between the MEF2C promoter and annotated enhancers. We further identified six genomic features enriched in TADs preferentially disrupted by noncoding BCRs in DD cases versus controls and used these features to build a model to predict TADs at risk for LRPEs across the genome. These results emphasize the potential impact of noncoding structural variants to cause LRPEs in unsolved DD cases, as well as the complex interaction of features associated with predicting three-dimensional chromatin structures intolerant to disruption

    Performance and Diagnostic Value of Genome-Wide Noninvasive Prenatal Testing in Multiple Gestations.

    Full text link
    OBJECTIVE: To evaluate the accuracy and diagnostic value of genome-wide noninvasive prenatal testing (NIPT) for the detection of fetal aneuploidies in multiple gestations, with a focus on dichorionic-diamniotic twin pregnancies. METHODS: We performed a retrospective cohort study including data from pregnant women with a twin or higher-order gestation who underwent genome-wide NIPT at one of the eight Belgian genetic centers between November 1, 2013, and March 1, 2020. Chorionicity and amnionicity were determined by ultrasonography. Follow-up invasive testing was carried out in the event of positive NIPT results. Sensitivity and specificity were calculated for the detection of trisomy 21, 18, and 13 in the dichorionic-diamniotic twin cohort. RESULTS: Unique NIPT analyses were performed for 4,150 pregnant women with a multiple gestation and an additional 767 with vanishing gestations. The failure rate in multiple gestations excluding vanishing gestations ranged from 0% to 11.7% among the different genetic centers. Overall, the failure rate was 4.8%, which could be reduced to 1.2% after single resampling. There were no common fetal trisomies detected among the 86 monochorionic-monoamniotic and 25 triplet cases. Two monochorionic-diamniotic twins had an NIPT result indicative of a trisomy 21, which was confirmed in both fetuses. Among 2,716 dichorionic-diamniotic twin gestations, a sensitivity of 100% (95% CI 74.12-100%) and a specificity of 100% (95% CI 99.86-100%) was reached for trisomy 21 (n=12). For trisomy 18 (n=3), the respective values were 75% (95% CI 30.06-95.44%) sensitivity and 100% (95% CI 99.86-100%) specificity, and for trisomy 13 (n=2), 100% (95% CI 20.65-100%) sensitivity and 99.96% (95% CI 99.79-99.99%) specificity. In the vanishing gestation group, 28 NIPT results were positive for trisomy 21, 18, or 13, with only five confirmed trisomies. CONCLUSION: Genome-wide NIPT performed accurately for detection of aneuploidy in dichorionic-diamniotic twin gestations

    Chromosomale microarrays in de prenatale diagnostiek

    No full text
    status: publishe
    corecore