3 research outputs found

    What's for lunch? The content and quality of lunches consumed by Dutch primary schoolchildren and the differences between lunches consumed at home and at school.

    No full text
    Background: Lunch is an important part of a healthy diet, which is essential for the development, growth and academic performance of school-aged children. Currently there is an increasing number of Dutch primary schoolchildren who are transitioning from eating lunch at home to school. There is limited knowledge about the current quality of the lunches consumed by primary schoolchildren in the Netherlands and whether there are any differences between lunches consumed at home or at school. To investigate differences in content and quality of lunches consumed by Dutch primary schoolchildren at home and at school. Methods: Cross-sectional study among 363 Dutch primary schoolchildren aged 4-12 years based on the first two years of the 2012-2016 Dutch National Food Consumption Survey. Demographic characteristics were obtained through a questionnaire. Diet was assessed with two non-consecutive 24-h dietary recalls. Quality of lunches was assessed on their nutritional quality whether they fitted the nutritional guidelines. 'Nonparametric tests were used to examine the content and quality of the lunches between place of consumption and parental educational position. Results: The most consumed lunch products among primary schoolchildren were bread, dairy products and sugar-sweetened beverages. Fruit and vegetable consumption was very low. Consumption of milk and other dairy products was higher among children who eat lunch at home than children who eat lunch at school (p < 0.01). Consumption of sugar-sweetened beverages was higher among children who eat lunch at school than children who eat lunch at home (p < 0.01), and at school a higher proportion of the drinks did not fit within the Dutch dietary recommendations (p < 0.01). Conclusions: The current content of the lunches consumed by Dutch primary schoolchildren leaves room for improvement, especially regarding fruit and vegetables. The statistically significantly higher consumption of sugar-sweetened beverages and lower consumption of milk and dairy products at school vs. home is worrisome, as currently more children in the Netherlands are transitioning to having lunch at school

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore