62 research outputs found

    Persistent transcriptional responses show the involvement of feed-forward control in a repeated dose toxicity study

    Get PDF
    Chemical carcinogenesis, albeit complex, often relies on modulation of transcription through activation or repression of key transcription factors. While analyzing extensive networks may hinder the biological interpretation, one may focus on dynamic network motifs, among which persistent feed-forward loops (FFLs) are known to chronically influence transcriptional programming. Here, to investigate the relevance a FFL-oriented approach in depth, we have focused on aflatoxin B1-induced transcriptomic alterations during distinct states of exposure (daily administration during 5 days followed by a non-exposed period) of human hepatocytes, by exploring known interactions in human transcription. Several TF-coding genes were persistently deregulated after washout of AFB1. Oncogene MYC was identified as the prominent regulator and driver of many FFLs, among which a FFL comprising MYC/HIF1A was the most recurrent. The MYC/HIF1A FFL was also identified and validated in an independent set as the master regulator of metabolic alterations linked to initiation and progression of carcinogenesis, i.e. the Warburg effect, possibly as result of persistent intracellular alterations arising from AFB1 exposure (nuclear and mitochondrial DNA damage, oxidative stress, transcriptional activation by secondary messengers). In summary, our analysis shows the involvement of FFLs as modulators of gene expression suggestive of a carcinogenic potential even after termination of exposure

    Cigarette smoke extract induces a phenotypic shift in epithelial cells: involvement of HIF1α in mesenchymal transition

    Get PDF
    In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-beta and HIF1 alpha signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-beta signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1 alpha knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1 alpha signaling appears to play an important role in this process

    Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER

    Get PDF
    MicroRNAs are small regulatory RNAs that post-transcriptionally control gene expression. Reduced expression of DICER, the enzyme involved in microRNA processing, is frequently observed in cancer and is associated with poor clinical outcome in various malignancies. Yet the underlying mechanisms are not well understood. Here, we identify tumor hypoxia as a regulator of DICER expression in large cohorts of breast cancer patients. We show that DICER expression is suppressed by hypoxia through an epigenetic mechanism that involves inhibition of oxygen-dependent H3K27me3 demethylases KDM6A/B and results in silencing of the DICER promoter. Subsequently, reduced miRNA processing leads to derepression of the miR-200 target ZEB1, stimulates the epithelial to mesenchymal transition and ultimately results in the acquisition of stem cell phenotypes in human mammary epithelial cells. Our study uncovers a previously unknown relationship between oxygen-sensitive epigenetic regulators, miRNA biogenesis and tumor stem cell phenotypes that may underlie poor outcome in breast cancer

    Two phases of disulfide bond formation have differing requirements for oxygen

    Get PDF
    Most proteins destined for the extracellular space require disulfide bonds for folding and stability. Disulfide bonds are introduced co- and post-translationally in endoplasmic reticulum (ER) cargo in a redox relay that requires a terminal electron acceptor. Oxygen can serve as the electron acceptor in vitro, but its role in vivo remains unknown. Hypoxia causes ER stress, suggesting a role for oxygen in protein folding. Here we demonstrate the existence of two phases of disulfide bond formation in living mammalian cells, with differential requirements for oxygen. Disulfide. bonds introduced rapidly during protein synthesis can occur without oxygen, whereas those introduced during post-translational folding or isomerization are oxygen dependent. Other protein maturation processes in the secretory pathway, including ER-localized N-linked glycosylation, glycan trimming, Golgi-localized complex glycosylation, and protein transport, occur independently of oxygen availability. These results suggest that an alternative electron acceptor is available transiently during an initial phase of disulfide bond formation and that post-translational oxygen-dependent disulfide bond formation causes hypoxia-induced ER stress

    Systems biology approaches to interpreting genomic data

    No full text
    Technological developments in genome-wide analysis have accelerated the generation of large, complex data sets characterizing human biology at the molecular level. Integration of data from different molecular levels holds great promise for gaining understanding of complex biological systems. Toxicogenomics aims to obtain a comprehensive mechanistic map of cellular processes that drive adverse outcomes. Such an integrated approach relies on combining various genome-wide profiles (DNA, RNA, protein, and metabolite) and linking these to functional endpoints to allow the identification of relevant biological pathways. Here, current strategies for generating multiomic data within the domain of toxicogenomics are highlighted, and current strategies for multiomic data integration are discussed

    Phosphorylation of eIF2 alpha promotes cell survival in response to benzo[a]pyrene exposure

    No full text
    Cellular adaptation is important to cope with various stresses induced by altered environmental conditions. By controlling mRNA translation rates cells may adapt to stress to promote survival. Phosphorylation of eIF2 alpha at serine 51 is one of the pathways controlling mRNA translation. Here we investigated the role of phosphorylated eIF2 alpha during exposure to the environmental carcinogen benzo(a)pyrene (BaP). For our study we used mouse embryonic fibroblasts with a wild type eIF2 alpha (MEF WT) and mouse embryonic fibroblasts with an eIF2 alpha S51A knock-in mutation that cannot be phosphorylated. Here, we show that eIF2 alpha phosphorylation occurs in MEF WT cells but not in MEF S51A cells. Survival of MEF S51A cells is profoundly reduced compared to MEF WT controls after BaP exposure. No differences in DNA damage or ROS production were observed between MEF WT and S51A cells. Disruption of eIF2 alpha phosphorylation caused increased levels of apoptosis in response to BaP. This work demonstrates that eIF2 alpha phosphorylation is important for reducing apoptosis and promoting cell survival in order to adapt to BaP exposure

    Two phases of disulfide bond formation have differing requirements for oxygen

    Get PDF
    Most proteins destined for the extracellular space require disulfide bonds for folding and stability. Disulfide bonds are introduced co- and post-translationally in endoplasmic reticulum (ER) cargo in a redox relay that requires a terminal electron acceptor. Oxygen can serve as the electron acceptor in vitro, but its role in vivo remains unknown. Hypoxia causes ER stress, suggesting a role for oxygen in protein folding. Here we demonstrate the existence of two phases of disulfide bond formation in living mammalian cells, with differential requirements for oxygen. Disulfide bonds introduced rapidly during protein synthesis can occur without oxygen, whereas those introduced during post-translational folding or isomerization are oxygen dependent. Other protein maturation processes in the secretory pathway, including ER-localized N-linked glycosylation, glycan trimming, Golgi-localized complex glycosylation, and protein transport, occur independently of oxygen availability. These results suggest that an alternative electron acceptor is available transiently during an initial phase of disulfide bond formation and that post-translational oxygen-dependent disulfide bond formation causes hypoxia-induced ER stress
    • …
    corecore