53 research outputs found
In vivo targeted DamID identifies CHD8 genomic targets in fetal mouse brain.
Funder: Royal SocietyFunder: Agouron InstituteGenetic studies of autism have revealed causal roles for chromatin remodeling gene mutations. Chromodomain helicase DNA binding protein 8 (CHD8) encodes a chromatin remodeler with significant de novo mutation rates in sporadic autism. However, relationships between CHD8 genomic function and autism-relevant biology remain poorly elucidated. Published studies utilizing ChIP-seq to map CHD8 protein-DNA interactions have high variability, consistent with technical challenges and limitations associated with this method. Thus, complementary approaches are needed to establish CHD8 genomic targets and regulatory functions in developing brain. We used in utero CHD8 Targeted DamID followed by sequencing (TaDa-seq) to characterize CHD8 binding in embryonic mouse cortex. CHD8 TaDa-seq reproduced interaction patterns observed from ChIP-seq and further highlighted CHD8 distal interactions associated with neuronal loci. This study establishes TaDa-seq as a useful alternative for mapping protein-DNA interactions in vivo and provides insights into the regulatory targets of CHD8 and autism-relevant pathophysiology associated with CHD8 mutations
Recommended from our members
Targeted DamID reveals differential binding of mammalian pluripotency factors.
The precise control of gene expression by transcription factor networks is crucial to organismal development. The predominant approach for mapping transcription factor-chromatin interactions has been chromatin immunoprecipitation (ChIP). However, ChIP requires a large number of homogeneous cells and antisera with high specificity. A second approach, DamID, has the drawback that high levels of Dam methylase are toxic. Here, we modify our targeted DamID approach (TaDa) to enable cell type-specific expression in mammalian systems, generating an inducible system (mammalian TaDa or MaTaDa) to identify genome-wide protein/DNA interactions in 100 to 1000 times fewer cells than ChIP-based approaches. We mapped the binding sites of two key pluripotency factors, OCT4 and PRDM14, in mouse embryonic stem cells, epiblast-like cells and primordial germ cell-like cells (PGCLCs). PGCLCs are an important system for elucidating primordial germ cell development in mice. We monitored PRDM14 binding during the specification of PGCLCs, identifying direct targets of PRDM14 that are key to understanding its crucial role in PGCLC development. We show that MaTaDa is a sensitive and accurate method for assessing cell type-specific transcription factor binding in limited numbers of cells
Cortical Neurogenesis Requires Bcl6-Mediated Transcriptional Repression of Multiple Self-Renewal-Promoting Extrinsic Pathways.
During neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here, we combine whole-genome transcriptional and epigenetic analyses with in vivo functional studies to demonstrate that Bcl6, a transcriptional repressor previously reported to promote cortical neurogenesis, acts as a driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 represses its targets through Sirt1 recruitment followed by histone deacetylation. Our data identify a molecular logic by which a single cell-intrinsic factor represses multiple extrinsic pathways that favor self-renewal, thereby ensuring robustness of neuronal fate transition
Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration.
Following severe or chronic liver injury, adult ductal cells (cholangiocytes) contribute to regeneration by restoring both hepatocytes and cholangiocytes. We recently showed that ductal cells clonally expand as self-renewing liver organoids that retain their differentiation capacity into both hepatocytes and ductal cells. However, the molecular mechanisms by which adult ductal-committed cells acquire cellular plasticity, initiate organoids and regenerate the damaged tissue remain largely unknown. Here, we describe that ductal cells undergo a transient, genome-wide, remodelling of their transcriptome and epigenome during organoid initiation and in vivo following tissue damage. TET1-mediated hydroxymethylation licences differentiated ductal cells to initiate organoids and activate the regenerative programme through the transcriptional regulation of stem-cell genes and regenerative pathways including the YAP-Hippo signalling. Our results argue in favour of the remodelling of genomic methylome/hydroxymethylome landscapes as a general mechanism by which differentiated cells exit a committed state in response to tissue damage.RCUK
Cancer Research UK
ERC
H2020
Wellcome Trus
Identification of new genes that control neurogenesis in the cerebral cortex
The cerebral cortex is one of the most complex and divergent of all biological structures and is composed of hundreds of different types of highly interconnected neurons. This complexity underlies its ability to perform exceedingly complex neural processes. One of the most important questions in developmental neurobiology is how such a vast degree of diversity and specificity is achieved during embryogenesis. Furthermore, understanding the cellular and genetic basis of cortical development may yield insights into the mechanisms underlying human disorders such as mental retardation, autism, epilepsies and brain tumors. During this Phd-project, we set out to identify novel transcription factors involved in cortical neurogenesis. Therefore, we initially took advantage of a model of in vitro embryonic stem cell (ESC)-derived corticogenesis that was previously established in the lab (Gaspard et al. 2008) and from several previously generated ESC lines that allow overexpression of specific transcription factors potentially involved in corticogenesis (van den Ameele et al. 2012). Among the genes tested, Bcl6, a B-cell lymphoma oncogene known to be expressed during cortical development but without well-characterized function in this context, displayed a strong proneurogenic activity and thus became the main focus of this thesis. During neurogenesis, neural stem/progenitor cells (NPCs) undergo an irreversible fate transition to become neurons. The Notch pathway is well known to be important for this process, and repression of Notch-dependent Hes genes is essential for triggering differentiation. However, Notch signalling often remains active throughout neuronal differentiation, implying a change in the transcriptional responsiveness to Notch during the neurogenic transition.We showed that Bcl6 starts to be expressed specifically during the transition from progenitors to postmitotic neurons and is required for proper neurogenesis of the mouse cerebral cortex. Bcl6 promotes this neurogenic conversion by switching the composition of Notch-dependent transcriptional complexes at the Hes5 promoter. Bcl6 triggers exclusion of the co-activator Mastermind-like 1 and recruitment of the NAD+-dependent deacetylase Sirt1, which we showed to be required for Bcl6-dependent neurogenesis in vitro. The resulting epigenetic silencing of Hes5 leads to neuronal differentiation despite active Notch signalling. These findings thus suggest a role for Bcl6 as a novel proneurogenic factor and uncover Notch-Bcl6-Sirt1 interactions that may affect other aspects of physiology and disease (Tiberi et al. 2012a). A subsequent yet unpublished part of this Phd-project focused on unraveling roles for Bcl6 in regionalization of the cerebral cortex. In all mammals, the three major areas of the neocortex are the motor, somatosensory and visual areas, each subdivided in secondary domains and complemented with species-specific additional areas. All these domains comprise of neurons with different functionality, molecular profiles, electrical activity and connectivity. Spatial patterning of the cortex is mainly under the control of diffusible molecules produced by organizing centers, but is also regulated by intrinsic, cell-autonomous programs (Tiberi et al. 2012b). Since Bcl6 expression is confined to frontal and parietal regions of the developing cerebral cortex and remains high in postmitotic neurons, also after completion of neurogenesis, we hypothesized it would be involved in acquisition of motor and somatosensory identity. As expected from the neurogenesis defect in these regions, we observed a trend towards a reduced size of the frontal areas in the Bcl6 mutant cortex. Preliminary data from cDNA microarray profiling after gain- and loss-of-function of Bcl6 and from in situ hybridization on mouse cortex however do not show dramatic changes in molecular markers of different cortical areas. Similarly, the coarse-grained pattern of thalamocortical and efferent projections of motor and somatosensory neurons appears to be spared. These preliminary findings thus suggest that Bcl6 is not strictly required for proper acquisition of motor and somatosensory areal identity.Doctorat en Sciences médicalesinfo:eu-repo/semantics/nonPublishe
Recommended from our members
Show MERCI on mobile mitochondria
There is emerging evidence that mitochondria can move between cells, particularly from immune cells into cancers. Recent work from Zhang et al. in Cancer Cell employs single-cell RNA- and mitochondrial DNA-sequencing in co-culture experiments and patient tumour samples to detect mitochondrial transfer. However, the mechanisms, scale and implications remain uncertain
- âŠ