344 research outputs found

    Construction of an integrated consensus map of the Apple genome based on four mapping populations

    Get PDF
    An integrated consensus genetic map for apple was constructed on the basis of segregation data from four genetically connected crosses (C1¿=¿Discovery × TN10-8, C2¿=¿Fiesta × Discovery, C3¿=¿Discovery × Prima, C4¿=¿Durello di Forli × Fiesta) with a total of 676 individuals using CarthaGene® software. First, integrated female¿male maps were built for each population using common female¿male simple sequence repeat markers (SSRs). Then, common SSRs over populations were used for the consensus map integration. The integrated consensus map consists of 1,046 markers, of which 159 are SSR markers, distributed over 17 linkage groups reflecting the basic chromosome number of apple. The total length of the integrated consensus map was 1,032 cM with a mean distance between adjacent loci of 1.1 cM. Markers were proportionally distributed over the 17 linkage groups (¿ 2¿=¿16.53, df¿=¿16, p¿=¿0.41). A non-uniform marker distribution was observed within all of the linkage groups (LGs). Clustering of markers at the same position (within a 1-cM window) was observed throughout LGs and consisted predominantly of only two to three linked markers. The four integrated female¿male maps showed a very good colinearity in marker order for their common markers, except for only two (CH01h01, CH05g03) and three (CH05a02z, NZ02b01, Lap-1) markers on LG17 and LG15, respectively. This integrated consensus map provides a framework for performing quantitative trait locus (QTL) detection in a multi-population design and evaluating the genetic background effect on QTL expression

    Shrub encroachment in Arctic tundra : Betula nana effects on above- and belowground litter decomposition

    Get PDF
    Author Posting. © Ecological Society of America, 2017. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 98 (2017): 1361–1376, doi:10.1002/ecy.1790.Rapid arctic vegetation change as a result of global warming includes an increase in the cover and biomass of deciduous shrubs. Increases in shrub abundance will result in a proportional increase of shrub litter in the litter community, potentially affecting carbon turnover rates in arctic ecosystems. We investigated the effects of leaf and root litter of a deciduous shrub, Betula nana, on decomposition, by examining species-specific decomposition patterns, as well as effects of Betula litter on the decomposition of other species. We conducted a 2-yr decomposition experiment in moist acidic tundra in northern Alaska, where we decomposed three tundra species (Vaccinium vitis-idaea, Rhododendron palustre, and Eriophorum vaginatum) alone and in combination with Betula litter. Decomposition patterns for leaf and root litter were determined using three different measures of decomposition (mass loss, respiration, extracellular enzyme activity). We report faster decomposition of Betula leaf litter compared to other species, with support for species differences coming from all three measures of decomposition. Mixing effects were less consistent among the measures, with negative mixing effects shown only for mass loss. In contrast, there were few species differences or mixing effects for root decomposition. Overall, we attribute longer-term litter mass loss patterns to patterns created by early decomposition processes in the first winter. We note numerous differences for species patterns between leaf and root decomposition, indicating that conclusions from leaf litter experiments should not be extrapolated to below-ground decomposition. The high decomposition rates of Betula leaf litter aboveground, and relatively similar decomposition rates of multiple species below, suggest a potential for increases in turnover in the fast-decomposing carbon pool of leaves and fine roots as the dominance of deciduous shrubs in the Arctic increases, but this outcome may be tempered by negative litter mixing effects during the early stages of encroachment.National Science Foundation Grant Numbers: OPP-0909507, OPP-0807639, ARC-0806451; Arctic LTER Project. Grant Number: DEB-102684

    High throughput marker development and application in horticultural crops

    Get PDF
    In this paper we present an overview of current developments in sequencing that offer the possibility to generate large numbers of markers in ornamental crops. The prospects of this new sequence technology for the application of markers in breeding of outcrossing and/or polyploid crops are discussed using examples in rose and lily

    Microsatellite markers spanning the apple ( Malus x domestica Borkh.) genome

    Get PDF
    A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats were generally more polymorphic than sequences containing trinucleotide repeats. Additional eight SSRs from published apple, pear, and Sorbus torminalis SSRs, whose position on the apple genome was unknown, have also been mapped. The transferability of SSRs across Maloideae species resulted in being efficient with 41% of the markers successfully transferred. For all 156 SSRs, the primer sequences, repeat type, map position, and quality of the amplification products are reported. Also presented are allele sizes, ranges, and number of SSRs found in a set of nine cultivars. All this information and those of the previous CH-SSR series can be searched at the apple SSR database ( http://www.hidras.unimi.it ) to which updates and comments can be added. A large number of apple ESTs containing SSR repeats are available and should be used for the development of new apple SSRs. The apple SSR database is also meant to become an international platform for coordinating this effort. The increased coverage of the apple genome with SSRs allowed the selection of a set of 86 reliable, highly polymorphic, and overall the apple genome well-scattered SSRs. These SSRs cover about 85% of the genome with an average distance of one marker per 15c

    Development and validation of a 20K Single Nucleotide Polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh)

    Get PDF
    High-density SNP arrays for genome-wide assessment of allelic variation have made high resolution genetic characterization of crop germplasm feasible. A medium density array for apple, the IRSC 8 K SNP array, has been successfully developed and used for screens of bi-parental populations. However, the number of robust and well-distributed markers contained on this array was not sufficient to perform genome-wide association analyses in wider germplasm sets, or Pedigree-Based Analysis at high precision, because of rapid decay of linkage disequilibrium. We describe the development of an Illumina Infinium array targeting 20 K SNPs. The SNPs were predicted from re-sequencing data derived from the genomes of 13 Malus × domestica apple cultivars and one accession belonging to a crab apple species (M. micromalus). A pipeline for SNP selection was devised that avoided the pitfalls associated with the inclusion of paralogous sequence variants, supported the construction of robust multi-allelic SNP haploblocks and selected up to 11 entries within narrow genomic regions of ±5 kb, termed focal points (FPs). Broad genome coverage was attained by placing FPs at 1 cM intervals on a consensus genetic map, complementing them with FPs to enrich the ends of each of the chromosomes, and by bridging physical intervals greater than 400 Kbps. The selection also included ~3.7 K validated SNPs from the IRSC 8 K array. The array has already been used in other studies where ~15.8 K SNP markers were mapped with an average of ~6.8 K SNPs per full-sib family. The newly developed array with its high density of polymorphic validated SNPs is expected to be of great utility for Pedigree-Based Analysis and Genomic Selection. It will also be a valuable tool to help dissect the genetic mechanisms controlling important fruit quality traits, and to aid the identification of marker-trait associations suitable for the application of Marker Assisted Selection in apple breeding programs

    Levels of Angiopoietin 2 Are Predictive for Mortality in Patients Infected With Yellow Fever Virus

    Get PDF
    In 2018 there was a large yellow fever outbreak in São Paulo, Brazil, with a high fatality rate. Yellow fever virus can cause, among other symptoms, hemorrhage and disseminated intravascular coagulation, indicating a role for endothelial cells in disease pathogenesis. Here, we conducted a case-control study and measured markers related to endothelial damage in plasma and its association with mortality. We found that angiopoietin 2 is strongly associated with a fatal outcome and could serve as a predictive marker for mortality. This could be used to monitor severe cases and provide care to improve disease outcome

    Lowering Low-Density Lipoprotein Particles in Plasma Using Dextran Sulphate Co-Precipitates Procoagulant Extracellular Vesicles

    Get PDF
    Plasma extracellular vesicles (EVs) are lipid membrane vesicles involved in several biological processes including coagulation. Both coagulation and lipid metabolism are strongly associated with cardiovascular events. Lowering very-low- and low-density lipoprotein ((V)LDL) particles via dextran sulphate LDL apheresis also removes coagulation proteins. It remains unknown, however, how coagulation proteins are removed in apheresis. We hypothesize that plasma EVs that contain high levels of coagulation proteins are concomitantly removed with (V)LDL particles by dextran sulphate apheresis. For this, we precipitated (V)LDL particles from human plasma with dextran sulphate and analyzed the abundance of coagulation proteins and EVs in the precipitate. Coagulation pathway proteins, as demonstrated by proteomics and a bead-based immunoassay, were over-represented in the (V)LDL precipitate. In this precipitate, both bilayer EVs and monolayer (V)LDL particles were observed by electron microscopy. Separation of EVs from (V)LDL particles using density gradient centrifugation revealed that almost all coagulation proteins were present in the EVs and not in the (V)LDL particles. These EVs also showed a strong procoagulant activity. Our study suggests that dextran sulphate used in LDL apheresis may remove procoagulant EVs concomitantly with (V)LDL particles, leading to a loss of coagulation proteins from the blood

    Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica)

    Get PDF
    Non-specific lipid transfer proteins (nsLTPs) of Rosaceae fruits, such as peach, apricot, cherry, plum and apple, represent major allergens for Mediterranean atopic populations. As a first step in elucidating the genetics of nsLTPs, we directed the research reported here towards identifying the number and location of nsLTP (Mal d 3) genes in the apple genome and determining their allelic diversity. PCR cloning was initially performed on two cultivars, Prima and Fiesta, parents of a core apple mapping progeny in Europe, based on two Mal d 3 sequences (AF221502 and AJ277164) in the GenBank. This resulted in the identification of two distinct sequences (representing two genes) encoding the mature nsLTP proteins. One is identical to accession AF221502 and has been named Mal d 3.01, and the other is new and has been named Mal d 3.02. Subsequent genome walking in the upstream direction and DNA polymorphism analysis revealed that these two genes are intronless and that they could be mapped on two homoeologous segments of linkage groups 12 and 4, respectively. Further cloning and sequencing of the coding and upstream region of both Mal d 3 genes in eight cultivars was performed to identify allelic variation. Assessment of the deduced nsLTP amino acid sequences gave a total of two variants at the protein level for Mal d 3.01 and three for Mal d 3.02. The consequences of our results for allergen nomenclature and the breeding of low allergenic apple cultivars are discusse
    corecore