48 research outputs found

    Production and deceleration of a pulsed beam of metastable NH (a1Δa ^1\Delta) radicals

    Get PDF
    We report on the production of a pulsed molecular beam of metastable NH (a1Δa ^1\Delta) radicals and present first results on the Stark deceleration of the NH (a1Δ,J=2,MΩ=4a ^1\Delta, J=2, M\Omega=-4) radicals from 550 m/s to 330 m/s. The decelerated molecules are excited on the spin-forbidden A3Πa1ΔA ^3\Pi \leftarrow a ^1\Delta transition, and detected via their subsequent spontaneous fluorescence to the X3Σ,v"=0X ^3\Sigma^{-}, v"=0 ground-state. These experiments demonstrate the feasibility of our recently proposed scheme [Phys. Rev. A 64 (2001) 041401] to accumulate ground-state NH radicals in a magnetic trap.Comment: 11 pages, 4 figures, v2: fixed author name for web-abstract, no changes to manuscrip

    Electrostatic trapping of metastable NH molecules

    Get PDF
    We report on the Stark deceleration and electrostatic trapping of 14^{14}NH (a1Δa ^1\Delta) radicals. In the trap, the molecules are excited on the spin-forbidden A3Πa1ΔA ^3\Pi \leftarrow a ^1\Delta transition and detected via their subsequent fluorescence to the X3ΣX ^3\Sigma^- ground state. The 1/e trapping time is 1.4 ±\pm 0.1 s, from which a lower limit of 2.7 s for the radiative lifetime of the a1Δ,v=0,J=2a ^1\Delta, v=0,J=2 state is deduced. The spectral profile of the molecules in the trapping field is measured to probe their spatial distribution. Electrostatic trapping of metastable NH followed by optical pumping of the trapped molecules to the electronic ground state is an important step towards accumulation of these radicals in a magnetic trap.Comment: replaced with final version, added journal referenc

    Operation of a Stark decelerator with optimum acceptance

    Get PDF
    With a Stark decelerator, beams of neutral polar molecules can be accelerated, guided at a constant velocity, or decelerated. The effectiveness of this process is determined by the 6D volume in phase space from which molecules are accepted by the Stark decelerator. Couplings between the longitudinal and transverse motion of the molecules in the decelerator can reduce this acceptance. These couplings are nearly absent when the decelerator operates such that only every third electric field stage is used for deceleration, while extra transverse focusing is provided by the intermediate stages. For many applications, the acceptance of a Stark decelerator in this so-called s=3s=3 mode significantly exceeds that of a decelerator in the conventionally used (s=1s=1) mode. This has been experimentally verified by passing a beam of OH radicals through a 2.6 meter long Stark decelerator. The experiments are in quantitative agreement with the results of trajectory calculations, and can qualitatively be explained with a simple model for the 6D acceptance. These results imply that the 6D acceptance of a Stark decelerator in the s=3s=3 mode of operation approaches the optimum value, i.e. the value that is obtained when any couplings are neglected.Comment: 13 pages, 11 figure

    Nonadiabatic transitions in a Stark decelerator

    Full text link
    In a Stark decelerator, polar molecules are slowed down and focussed by an inhomogeneous electric field which switches between two configurations. For the decelerator to work, it is essential that the molecules follow the changing electric field adiabatically. When the decelerator switches from one configuration to the other, the electric field changes in magnitude and direction, and this can cause molecules to change state. In places where the field is weak, the rotation of the electric field vector during the switch may be too rapid for the molecules to maintain their orientation relative to the field. Molecules that are at these places when the field switches may be lost from the decelerator as they are transferred into states that are not focussed. We calculate the probability of nonadiabatic transitions as a function of position in the periodic decelerator structure and find that for the decelerated group of molecules the loss is typically small, while for the un-decelerated group of molecules the loss can be very high. This loss can be eliminated using a bias field to ensure that the electric field magnitude is always large enough. We demonstrate our findings by comparing the results of experiments and simulations for the Stark deceleration of LiH and CaF molecules. We present a simple method for calculating the transition probabilities which can easily be applied to other molecules of interest.Comment: 12 pages, 9 figures, minor revisions following referee suggestion

    Resonances in rotationally inelastic scattering of OH(X2ΠX^2\Pi) with helium and neon

    Get PDF
    We present detailed calculations on resonances in rotationally and spin-orbit inelastic scattering of OH (X\,^2\Pi, j=3/2, F_1, f) radicals with He and Ne atoms. We calculate new \emph{ab initio} potential energy surfaces for OH-He, and the cross sections derived from these surfaces compare favorably with the recent crossed beam scattering experiment of Kirste \emph{et al.} [Phys. Rev. A \textbf{82}, 042717 (2010)]. We identify both shape and Feshbach resonances in the integral and differential state-to-state scattering cross sections, and we discuss the prospects for experimentally observing scattering resonances using Stark decelerated beams of OH radicals.Comment: 14 pages, 15 Figure

    Optimizing the Stark-decelerator beamline for the trapping of cold molecules using evolutionary strategies

    Get PDF
    We demonstrate feedback control optimization for the Stark deceleration and trapping of neutral polar molecules using evolutionary strategies. In a Stark-decelerator beamline pulsed electric fields are used to decelerate OH radicals and subsequently store them in an electrostatic trap. The efficiency of the deceleration and trapping process is determined by the exact timings of the applied electric field pulses. Automated optimization of these timings yields an increase of 40 % of the number of trapped OH radicals.Comment: 7 pages, 4 figures (RevTeX) (v2) minor corrections (v3) no changes to manuscript, but fix author list in arXiv abstrac

    Scattering of Stark-decelerated OH radicals with rare-gas atoms

    Get PDF
    We present a combined experimental and theoretical study on the rotationally inelastic scattering of OH (X\,^2\Pi_{3/2}, J=3/2, f) radicals with the collision partners He, Ne, Ar, Kr, Xe, and D2_2 as a function of the collision energy between 70\sim 70 cm1^{-1} and 400~cm1^{-1}. The OH radicals are state selected and velocity tuned prior to the collision using a Stark decelerator, and field-free parity-resolved state-to-state inelastic relative scattering cross sections are measured in a crossed molecular beam configuration. For all OH-rare gas atom systems excellent agreement is obtained with the cross sections predicted by close-coupling scattering calculations based on accurate \emph{ab initio} potential energy surfaces. This series of experiments complements recent studies on the scattering of OH radicals with Xe [Gilijamse \emph{et al.}, Science {\bf 313}, 1617 (2006)], Ar [Scharfenberg \emph{et al.}, Phys. Chem. Chem. Phys. {\bf 12}, 10660 (2010)], He, and D2_2 [Kirste \emph{et al.}, Phys. Rev. A {\bf 82}, 042717 (2010)]. A comparison of the relative scattering cross sections for this set of collision partners reveals interesting trends in the scattering behavior.Comment: 10 pages, 5 figure

    The Buffer Gas Beam: An Intense, Cold, and Slow Source for Atoms and Molecules

    Get PDF
    Beams of atoms and molecules are stalwart tools for spectroscopy and studies of collisional processes. The supersonic expansion technique can create cold beams of many species of atoms and molecules. However, the resulting beam is typically moving at a speed of 300-600 m/s in the lab frame, and for a large class of species has insufficient flux (i.e. brightness) for important applications. In contrast, buffer gas beams can be a superior method in many cases, producing cold and relatively slow molecules in the lab frame with high brightness and great versatility. There are basic differences between supersonic and buffer gas cooled beams regarding particular technological advantages and constraints. At present, it is clear that not all of the possible variations on the buffer gas method have been studied. In this review, we will present a survey of the current state of the art in buffer gas beams, and explore some of the possible future directions that these new methods might take
    corecore