9 research outputs found

    Characterisation of the Fusarium graminearum-Wheat Floral Interaction

    Get PDF
    Fusarium Ear Blight is a destructive fungal disease of cereals including wheat and can contaminate the crop with various trichothecene mycotoxins. This investigation has produced a new β-glucuronidase (GUS) reporter strain that facilitates the quick and easy assessment of plant infection. The constitutively expressed gpdA:GUS strain of Fusarium graminearum was used to quantify the overall colonisation pattern. Histochemical and biochemical approaches confirmed, in susceptible wheat ear infections, the presence of a substantial phase of symptomless fungal growth. Separate analyses demonstrated that there was a reduction in the quantity of physiologically active hyphae as the wheat ear infection proceeded. A simplified linear system of rachis infection was then utilised to evaluate the expression of several TRI genes by RT-qPCR. Fungal gene expression at the advancing front of symptomless infection was compared with the origin of infection in the rachis. This revealed that TRI gene expression was maximal at the advancing front and supports the hypothesis that the mycotoxin deoxynivalenol plays a role in inhibiting plant defences in advance of the invading intercellular hyphae. This study has also demonstrated that there are transcriptional differences between the various phases of fungal infection and that these differences are maintained as the infection proceeds

    Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase

    Get PDF
    Specific chemicals can prime the plant immune system for augmented defense. β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but is hypersensitive to BABA-induced growth repression. IBI1 encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of the R enantiomer of BABA to IBI1 primed the protein for noncanonical defense signaling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth

    Initial Characterization of the Photosynthetic Apparatus of “Candidatus Chlorothrix halophila,” a Filamentous, Anoxygenic Photoautotroph▿ †

    No full text
    “Candidatus Chlorothrix halophila” is a recently described halophilic, filamentous, anoxygenic photoautotroph (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004) that was enriched from the hypersaline microbial mats at Guerrero Negro, Mexico. Analysis of the photosynthetic apparatus by negative staining, spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the photosynthetic apparatus in this organism has similarities to the photosynthetic apparatus in both the Chloroflexi and Chlorobi phyla of green photosynthetic bacteria. The chlorosomes were found to be ellipsoidal and of various sizes, characteristics that are comparable to characteristics of chlorosomes in other species of green photosynthetic bacteria. The absorption spectrum of whole cells was dominated by the chlorosome bacteriochlorophyll c (BChl c) peak at 759 nm, with fluorescence emission at 760 nm. A second fluorescence emission band was observed at 870 nm and was tentatively attributed to a membrane-bound antenna complex. Fluorescence emission spectra obtained at 77 K revealed another complex that fluoresced at 820 nm, which probably resulted from the chlorosome baseplate complex. All of these results suggest that BChl c is present in the chlorosomes of “Ca. Chlorothrix halophila,” that BChl a is present in the baseplate, and that there is a membrane-bound antenna complex. Analysis of the proteins in the chlorosomes revealed an ∼6-kDa band, which was found to be related to the BChl c binding protein CsmA found in other green bacteria. Overall, the absorbance and fluorescence spectra of “Ca. Chlorothrix halophila” revealed an interesting mixture of photosynthetic characteristics that seemed to have properties similar to properties of both phyla of green bacteria when they were compared to the photosynthetic characteristics of Chlorobium tepidum and Chloroflexus aurantiacus

    Myxoxanthophyll Is Required for Normal Cell Wall Structure and Thylakoid Organization in the Cyanobacterium Synechocystis sp. Strain PCC 6803

    No full text
    Myxoxanthophyll is a carotenoid glycoside in cyanobacteria that is of unknown biological significance. The sugar moiety of myxoxanthophyll in Synechocystis sp. strain PCC 6803 was identified as dimethyl fucose. The open reading frame sll1213 encoding a fucose synthetase orthologue was deleted to probe the role of fucose and to determine the biological significance of myxoxanthophyll in Synechocystis sp. strain PCC 6803. Upon deletion of sll1213, a pleiotropic phenotype was obtained: when propagated at 0.5 μmol photons m(−2) s(−1), photomixotrophic growth of cells lacking sll1213 was poor. When grown at 40 μmol photons m(−2) s(−1), growth was comparable to that of the wild type, but cells showed a severe reduction in or loss of the glycocalyx (S-layer). As a consequence, cells aggregated in liquid as well as on plates. At both light intensities, new carotenoid glycosides accumulated, but myxoxanthophyll was absent. New carotenoid glycosides may be a consequence of less-specific glycosylation reactions that gained prominence upon the disappearance of the native sugar moiety (fucose) of myxoxanthophyll. In the mutant, the N-storage compound cyanophycin accumulated, and the organization of thylakoid membranes was altered. Altered cell wall structure and thylakoid membrane organization and increased cyanophycin accumulation were also observed for Δslr0940K, a strain lacking ζ-carotene desaturase and thereby all carotenoids but retaining fucose. Therefore, lack of myxoxanthophyll and not simply of fucose results in most of the phenotypic effects described here. It is concluded that myxoxanthophyll contributes significantly to the vigor of cyanobacteria, as it stabilizes thylakoid membranes and is critical for S-layer formation

    Pigment Analysis of “Candidatus Chlorothrix halophila,” a Green Filamentous Anoxygenic Phototrophic Bacterium▿

    No full text
    The pigment composition of “Candidatus Chlorothrix halophila,” a filamentous anoxygenic phototrophic bacterium found in Baja California Sur, Mexico, was determined. Previous work showed that bacteriochlorophyll c (BChl c) was the major pigment in “Ca. Chlorothrix halophila,” but it was not clear if this bacterium also contains BChl a (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004). Here we show that in addition to BChl c, a small amount of a pigment that is spectrally indistinguishable from BChl a is present in cell extracts of “Ca. Chlorothrix halophila.” Nevertheless, the BChl a-like pigment from “Ca. Chlorothrix halophila” has a different molecular weight and a different high-performance liquid chromatography elution time than BChl a from other photosynthetic bacteria. Based on mass spectrometry and other spectroscopic analysis, we determined that the BChl a-like pigment in “Ca. Chlorothrix halophila” contains a tetrahydrogeranylgeraniol tail rather than the phytol tail that is present in BChl a. The carotenoids and major BChl c homologs in “Ca. Chlorothrix halophila” were also identified. BChls c were found to be farnesol esterified and geranylgeraniol esterified

    SnRK1 from <i>Arabidopsis thaliana</i> is an atypical AMPK

    No full text
    SNF1-related protein kinase 1 (SnRK1) is the plant orthologue of the evolutionarily-conserved SNF1/AMPK/SnRK1 protein kinase family that contributes to cellular energy homeostasis. Functional as heterotrimers, family members comprise a catalytic α subunit and non-catalytic β and γ subunits; multiple isoforms of each subunit type exist, giving rise to various isoenzymes. The Arabidopsis thaliana genome contains homologues of each subunit type, and, in addition, two atypical subunits, β3 and βγ, with unique domain architecture, that are found only amongst plants, suggesting atypical heterotrimers. The AtSnRK1 subunit structure was determined using recombinant protein expression and endogenous co-immunoprecipitation, and six unique isoenzyme combinations were identified. Each heterotrimeric isoenzyme comprises a catalytic α subunit together with the unique βγ subunit and one of three non-catalytic β subunits: β1, β2 or the plant-specific β3 isoform. Thus, the AtSnRK1 heterotrimers contain the atypical βγ subunit rather than a conventional γ subunit. Mammalian AMPK heterotrimers are phosphorylated on the T–loop (pThr175/176) within both catalytic a subunits. However, AtSnRK1 is insensitive to AMP and ADP, and is resistant to T–loop dephosphorylation by protein phosphatases, a process that inactivates other SNF1/AMPK family members. In addition, we show that SnRK1 is inhibited by a heat-labile, >30 kDa, soluble proteinaceous factor that is present in the lysate of young rosette leaves. Finally, none of the three SnRK1 carbohydrate-binding modules, located in the β1, β2 and βγ subunits, associate with various carbohydrates, including starch, the plant analogue of glycogen to which AMPK binds in vitro. These data clearly demonstrate that AtSnRK1 is an atypical member of the SNF1/AMPK/SnRK1 family
    corecore