242 research outputs found

    Algal-Induced Biogeomorphic Feedbacks Lay the Groundwork for Coastal Wetland Development

    Get PDF
    Ecosystem establishment under adverse geophysical conditions is often studied within the “windows of opportunity” framework, identifying disturbance-free periods (e.g., calm wave climate) where species can overcome establishment thresholds. However, the role of biogeophysical interactions in this framework is less well understood. The establishment of saltmarsh vegetation on tidal flats, for example, is limited by abiotic factors such as hydrodynamics, sediment stability and drainage. On tidal flats, raised sediment ridges colonized by algal mats (Vaucheria sp.) appear to accomodate high densities of plant seedlings. Such ridges were previously found to have higher sediment strength than substratum without algae. Here, we investigate whether these measurements can be explained by geophysical factors only, or that biological (Vaucheria-induced) processes influence tidal marsh establishment by forming stabilized bedforms. We performed two experiments under controlled mesocosm conditions, to test the hypotheses that (a) Vaucheria grows better on elevated topographic relief, that (b) the binding force of their algal filaments increases sediment strength, and that (c) Vaucheria consequently creates elevated topographic relief that further facilitates algal growth. Our experimental results confirm the existence of this algal-induced biogeomorphic feedback cycle. These findings imply that benthic algae like Vaucheria may contribute significantly to tidal marsh formation by creating elevated and stabilized substratum. This suggests biogeophysical feedbacks can “widen” the windows of opportunity for further ecosystem establishment. Our results could be useful for the design of managed realignment projects aimed at restoring the unique ecosystem services of coastal wetlands, such as habitat biodiversity, carbon sequestration potential and nature-based flood defense

    Spatial self-organization as a new perspective on cold-water coral mound development

    Get PDF
    Cold-water corals build extensive reefs on the seafloor that are oases of biodiversity, biomass, and organic matter processing rates. The reefs baffle sediments, and when coral growth and sedimentation outweigh ambient sedimentation, carbonate mounds of tens to hundreds of meters high and several kilometers wide can form. Because coral mounds form over ten-thousands of years, their development process remains elusive. While several environmental factors influence mound development, the mounds also have a major impact on their environment. This feedback between environment and mounds, and how this drives mound development is the focus of this paper. Based on the similarity of spatial coral mound patterns and patterns in self-organized ecosystems, we provide a new perspective on coral mound development. In accordance with the theory of self-organization through scale-dependent feedbacks, we first elicit the processes that are known to affect mound development, and might cause scale-dependent feedbacks. Then we demonstrate this concept with model output from a study on the Logachev area, SW Rockall Trough margin. Spatial patterns in mound provinces are the result of a complex set of interacting processes. Spatial self-organization provides a framework in which to place and compare these processes, so as to assess if and how they contribute to pattern formation in coral mounds

    Evasion of tipping in complex systems through spatial pattern formation

    Get PDF
    The concept of tipping points and critical transitions helps inform our understanding of the catastrophic effects that global change may have on ecosystems, Earth system components, and the whole Earth system. The search for early warning indicators is ongoing, and spatial self-organization has been interpreted as one such signal. Here, we review how spatial self-organization can aid complex systems to evade tipping points and can therefore be a signal of resilience instead. Evading tipping points through various pathways of spatial pattern formation may be relevant for many ecosystems and Earth system components that hitherto have been identified as tipping prone, including for the entire Earth system. We propose a systematic analysis that may reveal the broad range of conditions under which tipping is evaded and resilience emerges

    Mussel seed is highly plastic to settling conditions:The influence of waves versus tidal emergence

    Get PDF
    Phenotypic plasticity is important for organisms to adjust to a new environment.Therefore, the transplantation success of an organism to a new environment can be increased with knowledge of its capacity for phenotypic plasticity in different life stages, and the phenotypic adjustments it needs to make in specific environmental situations. Both the capacity for phenotypic plasticity and the necessary phenotypic adjustments for transplantation were tested in a mesocosm experiment using blue mussels Mytilus edulis as a model organism. This study tested (1) to what extent mussel seed coming from collectors in the water column are still capable of adjusting their phenotype, and (2) whether exposure to air or wave action is more important as a driver of phenotypic adjustments for mussels living in intertidal conditions. We found that musselseed had a high capacity for phenotypic plasticity, and were capable of adjusting their morphology to accommodate different intertidal hydrodynamic conditions. Exposure to air influenced the shell shape, condition, byssal attachment strength and aggregation behaviour, but exposure to waves played the most important role in determining the phenotype of mussels. Wave-exposedmussels grew bigger, rounder, had thicker shells and a stronger byssal attachment strength than mussels exposed to either calm tidal or calm submerged environments. This knowledge is important for selecting a suitable source population and transplantation location

    Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh

    Get PDF
    Grazers can have a large impact on ecosystem processes and are known to change vegetation composition. However, knowledge of how the long-term presence of grazers affects soil carbon sequestration is limited. In this study, we estimated total accumulated organic carbon in soils of a back-barrier salt marsh and determined how this is affected by long-term grazing by both small and large grazers in relation to age of the ecosystem. In young marshes, where small grazers predominate, hare and geese have a limited effect on total accumulated organic carbon. In older, mature marshes, where large grazers predominate, cattle substantially enhanced carbon content in the marsh soil. We ascribe this to a shift in biomass distribution in the local vegetation towards the roots in combination with trampling effects on the soil chemistry. These large grazers thus act as ecosystem engineers: their known effect on soil compaction (based on a previous study) enhances anoxic conditions in the marsh soil, thereby reducing the oxygen available for organic carbon decomposition by the local microbial community. This study showed that the indirect effects of grazing can significantly enhance soil carbon storage through changing soil abiotic conditions. This process should be taken into account when estimating the role of ecosystems in reducing carbon dioxide concentration in the atmosphere. Ultimately, we propose a testable conceptual framework that includes 3 pathways by which grazers can alter carbon storage: (1) through above-ground biomass removal, (2) through alteration of biomass distribution towards the roots and/or (3) by changing soil abiotic conditions that affect decomposition.</p

    Grazing away the resilience of patterned ecosystems

    Get PDF
    Ecosystems’ responses to changing environmental conditions can be modulated by spatial self-organization. A prominent example of this can be found in drylands, where formation of vegetation patterns attenuates the magnitude of degradation events in response to decreasing rainfall. In model studies, the pattern wavelength responds to changing conditions, which is reflected by a rather gradual decline in biomass in response to decreasing rainfall. Although these models are spatially explicit, they have adopted a mean-field approach to grazing. By taking into account spatial variability when modeling grazing, we find that (over)grazing can lead to a dramatic shift in biomass, so that degradation occurs at rainfall rates that would otherwise still maintain a relatively productive ecosystem. Moreover, grazing increases the resilience of degraded ecosystem states. Consequently, restoration of degraded ecosystems could benefit from the introduction of temporary small-scale exclosures to escape from the basin of attraction of degraded states.</p

    Bioengineering promotes habitat heterogeneity and biodiversity on mussel reefs

    Get PDF
    Loss of biodiversity is among the most pressing global problems. Yet, despite its pertinent nature, the biological processes involved in the maintenance of biodiversity are poorly understood. Habitat heterogeneity is widely regarded as a key factor underpinning the biodiversity of land- and sea-scapes. However, it remains unclear how species coexist in many of those ecosystems that lack conspicuous heterogeneity. We demonstrate how spatially self-organized mussel reefs create microhabitats/heterogeneity that facilitate diverse invertebrate communities. By comparing seawater filled pools with open inlets in a mussel reef, we found that natural reef pools, emerging due to the habitat engineering of the mussels, strongly increased variation in organic enrichment and promoted beta-diversity compared to the surrounding tidal flat. These findings significantly extend the scale of influence typically described for self-organized habitats and highlight the importance of bioengineering and its positive effects on habitat heterogeneity and community diversity

    Are all patterns created equal?:Cooperation is more likely in spatially simple habitats

    Get PDF
    Cooperative behaviours, such as aggregation with neighbouring conspecifics, canenhance resilience in habitats where risks (i.e. predation, physical disturbances) are high, exerting positive feedback loops to maintain a healthy population. At the same time, cooperation behaviours can involve some extra energy expenditures and in‐ creasing resource competition. For sessile reefs, like mussels, simulation models predict increased cooperation under increasing levels of environmental stress. Predation risk is viewed as a behaviour‐modifying stressor, but its role on cooperation mechanisms, such as likelihood of reciprocity, has not yet been empirically tested. This study harnesses this framework to understand how cooperation changes under different perceived levels of predation risk, using mussel beds as model of a complex“self‐organised” system. Hence, we assessed the context dependency of cooperation response in different “landscapes of fear,” created by changes in predator cues, sub‐ stratum availability and body size. Our experiments demonstrated that i) cooperation in a mussel bed system increases when predator cues are present, but that this relationship was found to be both, ii) strongly context‐dependent, particularly upon substratum availability and iii) size‐dependent. That is, while cooperation is in general greater for larger individuals, the response to risk results in greater cooperation when alternative attachment substratum is absent, meaning that simpler landscapes may be perceived as riskier. The context dependency of structural complexity is also an essential finding to consider in a changing world where habitats are losing complexity and cooperative strategies should be maximised
    • 

    corecore