266 research outputs found

    Robustness of fossil fish teeth for seawater neodymium isotope reconstructions under variable redox conditions in an ancient shallow marine setting

    Get PDF
    Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenousā€dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical midā€REEā€enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth, and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources

    Dynamic intermediate ocean circulation in the North Atlantic during Heinrich Stadial 1: a radiocarbon and neodymium isotope perspective

    Get PDF
    The last deglaciation was characterised by a series of millennial scale climate events that have been linked to deep ocean variability. While often implied in interpretations, few direct constraints exist on circulation changes at mid-depths. Here we provide new constraints on the variability of deglacial mid-depth circulation using combined radiocarbon and neodymium isotopes in 24 North Atlantic deep-sea corals. Their aragonite skeletons have been dated by uranium-series, providing absolute ages and the resolution to record centennial scale changes, while transects spanning the lifetime of a single coral allow sub-centennial tracer reconstruction. Our results reveal that rapid fluctuations of water mass sourcing and radiocarbon affected the mid-depth water column (1.7-2.5ā€‰km) on timescales of less than 100ā€‰years during the latter half of Heinrich Stadial 1. The neodymium isotopic variability (āˆ’14.5 to āˆ’11.0) ranges from the composition of the modern northern-sourced waters towards more radiogenic compositions that suggest the presence of a greater southern-sourced component at some times. However, in detail, simple two-component mixing between well-ventilated northern-sourced and radiocarbon-depleted southern-sourced water masses cannot explain all our data. Instead, corals from ~15.0ā€‰ka and ~15.8ā€‰ka may record variability between southern-sourced intermediate waters and radiocarbon-depleted northern-sourced waters, unless there was a major shift in the neodymium isotopic composition of the northern endmember. In order to explain the rapid shift towards the most depleted radiocarbon values at ~15.4ā€‰ka, we suggest a different mixing scenario involving either radiocarbon-depleted deep water from the Greenland-Iceland-Norwegian Seas or a southern-sourced deep water mass. Since these mid-depth changes preceded the Bolling-Allerod warming, and were apparently unaccompanied by changes in the deep Atlantic, they may indicate an important role for the intermediate ocean in the early deglacial climate evolution

    Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific

    Get PDF
    Over the past decades, observations have confirmed decreasing oxygen levels and shoaling of oxygen minimum zones (OMZs) in the tropical oceans. Such changes impact the biogeochemical cycling of micronutrients such as Cd, but the potential consequences are only poorly constrained. Here, we present seawater Cd concentrations and isotope compositions for 12 depth profiles at coastal, nearshore and offshore stations from 4ā—¦S to 14ā—¦S in the eastern tropical South Pacific, where one of the worldā€™s strongest OMZs prevails. The depth profiles of Cd isotopes display high Ī“114/110Cd at the surface and decreasing Ī“114/110Cd with increasing water depth, consistent with preferential utilization of lighter Cd isotopes during biological uptake in the euphotic zone and subsequent remineralization of the sinking biomass. In the surface and subsurface ocean, seawater displays similar Ī“114/110Cd signatures of 0.47 Ā± 0.23ā€° to 0.82 Ā± 0.05ā€° across the entire eastern tropical South Pacific despite highly variable Cd concentrations between 0.01 and 0.84 nmol/kg. This observation, best explained by an open system steady-state fractionation model, contrasts with previous studies of the South Atlantic and South Pacific Oceans, where only Cd-deficient waters have a relatively constant Cd isotope signature. For the subsurface to about 500 m depth, the variability of seawater Cd isotope compositions can be modeled by mixing of remineralized Cd with subsurface water from the base of the mixed layer. In the intermediate and deep eastern tropical South Pacific (>500 m), seawater [Cd] and Ī“114/110Cd appear to follow the distribution and mixing of major water masses. We identified modified AAIW of the ETSP to be more enriched in [Cd] than AAIW from the source region, whilst both water masses have similar Ī“114/110Cd. A mass balance estimate thus constrains a Ī“114/110Cd of between 0.38ā€° and 0.56ā€° for the accumulated remineralized Cd in the ETSP. Nearly all samples show a tight coupling of Cd and PO4 concentrations, whereby surface and deeper waters define two distinct linear trends. However, seawater at a coastal station located within a pronounced plume of H2S, is depleted in [Cd] and features significantly higher Ī“114/110Cd. This signature is attributed to the formation of authigenic CdS with preferential incorporation of lighter Cd isotopes. The process follows a Rayleigh fractionation model with a fractionation factor of Ī±114/110Cdseawater-CdS = 1.00029. Further deviations from the deep Cdā€“PO4 trend were observed for samples with O2 < 10 Ī¼mol/kg and are best explained by in situ CdS precipitation within the decaying organic matter even though dissolved H2S was not detectable in ambient seawater

    A deep Tasman outflow of Pacific waters during the last glacial period

    Get PDF
    Ā© The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Struve, T., Wilson, D., Hines, S., Adkins, J., & van de Flierdt, T. A deep Tasman outflow of Pacific waters during the last glacial period. Nature Communications, 13(1), (2022): 3763, https://doi.org/10.1038/s41467-022-31116-7.The interoceanic exchange of water masses is modulated by flow through key oceanic choke points in the Drake Passage, the Indonesian Seas, south of Africa, and south of Tasmania. Here, we use the neodymium isotope signature (ĪµNd) of cold-water coral skeletons from intermediate depths (1460ā€’1689ā€‰m) to trace circulation changes south of Tasmania during the last glacial period. The key feature of our dataset is a long-term trend towards radiogenic ĪµNd values of ~āˆ’4.6 during the Last Glacial Maximum and Heinrich Stadial 1, which are clearly distinct from contemporaneous Southern Ocean ĪµNd of ~āˆ’7. When combined with previously published radiocarbon data from the same corals, our results indicate that a unique radiogenic and young water mass was present during this time. This scenario can be explained by a more vigorous Pacific overturning circulation that supported a deeper outflow of Pacific waters, including North Pacific Intermediate Water, through the Tasman Sea.The authors acknowledge financial support from the Grantham Institute of Climate Change and the Environment (T.v.d.F. and T.S.), the Ministry for Science and Culture of the State of Lower Saxony (T.S.), Marie Curie Reintegration grant IRG 230828 (T.v.d.F.), Leverhulme Trust grant RPG-398 (T.v.d.F.), Natural Environment Research Council grants NE/F016751/1 (T.v.d.F.), NE/N001141/1 (T.v.d.F. and D.J.W.), and NE/T011440/1 (D.J.W.), and National Science Foundation grant OCE-1503129 (J.F.A. and S.K.V.H.). Open Access funding is enabled by the DFG open access publication fund and the Carl von Ossietzky University Oldenburg

    Particle-seawater interaction of neodymium in the North Atlantic

    Get PDF
    Dissolved neodymium (Nd) isotopes (expressed as ĪµNd) have been widely used as a water mass tracer in paleoceanography. However, one aspect of the modern biogeochemical cycle of Nd that has been sparsely investigated is the interplay between dissolved and particulate phases in seawater. We here present the first regional data set on particulate Nd isotope compositions (ĪµNdp) and concentrations ([Nd]p) from five stations in the western North Atlantic Ocean along the GEOTRACES GA02 transect, in conjunction with previously published dissolved Nd isotope compositions (ĪµNdd) and concentrations ([Nd]d)1. Key observations and interpretations from our new particulate data set include the following: (1) A low fractional contributions of [Nd]p to the total Nd inventory per volume unit of seawater (~5%), with significant increases of up to 45% in benthic boundary layers. (2) Increasing Nd concentrations in suspended particulate matter ([Nd]SPM) and fractions of lithogenic material with water depth, suggesting the removal of Nd poor phases. (3) Different provenances of particulates in the subpolar and subtropical gyres as evidenced by their Nd isotope fingerprints reaching from ĪµNdp ā‰ˆ -20 near the Labrador Basin (old continental crust), over ĪµNdp ā‰ˆ -4 between Iceland and Greenland (young mafic provenance), to values of ĪµNdp ā‰ˆ-13 in the subtropics (similar to African dust signal). (4) Vertical heterogeneity of ĪµNdp, as well as large deviations from ambient seawater values in the subpolar gyre, indicate advection of lithogenic particles in this area. (5) Vertically homogenous ĪµNdp values in the subtropical gyre, indistinguishable from ĪµNdd values, are indicative of predominance of vertical particulate supply. The process of reversible scavenging only seems to influence particulate signatures below 3 km. Overall, we do not find evidence on enhanced particle dissolution, often invoked to explain the observed increase in dissolved Nd in the North Atlantic

    Sea-ice control on deglacial lower cell circulation changes recorded by Drake Passage deep-sea corals

    Get PDF
    Financial support to DJW, TS, and TvdF was provided by the Natural Environment Research Council (NE/N001141/1), the Leverhulme Trust (RPG-398), the Grantham Institute for Climate Change and the Environment, and a Marie Curie Reintegration grant (IRG 230828). LFR acknowledges support from the Natural Environment Research Council (NE/N003861/1) and the European Research Council (278705).The sequence of deep ocean circulation changes between the Last Glacial Maximum and the Holocene provides important insights for understanding deglacial climate change and the role of the deep ocean in the global carbon cycle. Although it is known that significant amounts of carbon were sequestered in a deep overturning cell during glacial periods and released during deglaciation, the driving mechanisms for these changes remain unresolved. Southern Ocean sea-ice has recently been proposed to play a critical role in setting the global deep ocean stratification and circulation, and hence carbon storage, but testing such conceptual and modelling studies requires data constraining past circulation changes. To this end, we present the first deglacial dataset of neodymium (Nd) isotopes measured on absolute-dated deep-sea corals from modern Lower Circumpolar Deep Water depths in the Drake Passage. Our record demonstrates deglacial variability of 2.5 ĪµNd units, with radiogenic values of up to during the Last Glacial Maximum providing evidence for a stratified glacial circulation mode with restricted incorporation of Nd from North Atlantic Deep Water in the lower cell. During the deglaciation, a renewed Atlantic influence in the deep Southern Ocean is recorded early in Heinrich Stadial 1, coincident with Antarctic sea-ice retreat, and is followed by a brief return to more Pacific-like values during the Antarctic Cold Reversal. These changes demonstrate a strong influence of Southern Ocean processes in setting deep ocean circulation and support the proposed sea-ice control on deep ocean structure. Furthermore, by constraining the Nd isotopic composition of Lower Circumpolar Deep Water in the Southern Ocean, our new data are important for interpreting deglacial circulation changes in other ocean basins and support a spatially asynchronous return of North Atlantic Deep Water to the deep southeast and southwest Atlantic Ocean.PostprintPostprintPeer reviewe

    Geochemical ļ¬ngerprints of glacially eroded bedrock from West Antarctica: Detrital thermochronology, radiogenic isotope systematics and trace element geochemistry in Late Holocene glacial-marine sediments

    Get PDF
    Geochemical provenance studies of glacial-marine sediments provide a powerful approach to describe subglacial geology, sediment transport pathways, and past ice sheet dynamics. The marine-based West Antarctic Ice Sheet (WAIS) is considered highly vulnerable to ocean warming and sea level rise that is likely to cause its rapid and irreversible retreat. Studies of its past response to climate change are hence essential for projecting its future behaviour. The application of radiogenic and trace element provenance studies for past ice sheet reconstructions requires surveying the geographic variability of geochemical compositions of glaciomarine sediments. In this study, we characterize the provenance of the detrital fraction of 67 Late Holocene marine sediment samples collected oļ¬€ the Paciļ¬c margin of West Antarctica (60Ā°W to 160Ā°W), including 40Ar/39Ar ages of individual hornblende and biotite grains (> 150 Ī¼m), as well as Sr and Nd isotope and trace element composition of the ļ¬ne-grained (40Ar/39Ar ages of iceberg-rafted hornblende and biotite grains record primarily Carboniferous to Lates Quaternary ages (~0 to 380 Ma), with a notable age peak of ~100 Ma, associated with plutonic intrusions or deformation events during the mid-Cretaceous. Permian-Jurassic 40Ar/39Ar ages are widespread in the Amundsen Sea sector, marking episodes of large-volume magmatism along the long-lived continental margin. Metasedimentary rocks and Late Cenozoic alkali basalts in West Antarctica cannot be detected using detrital hornblende and biotite 40Ar/39Ar ages due to the absence or small grain-size (i.e. < 150 Ī¼m) of these minerals in such rocks. These sources can however be readily recognized by their ļ¬ne-grained geochemical composition. In addition, geographic trends in the provenance from proximal to distal sites provide insights into major sediment transport pathways. While the transport of ļ¬ne-grained detritus follows bathymetric cross-shelf troughs, the distribution of iceberg-rafted grains shows inļ¬‚uence by transport in the Antarctic Coastal Current. Our study provides the ļ¬rst systematic geochemical characterisation of sediment provenance oļ¬€ West Antarctica, and highlights the importance of combining multiple provenance approaches in diļ¬€erent size fractions of glacial-marine sediments, and paves the way to investigate past WAIS dynamics

    Tracing acid mine drainage and estuarine Zn attenuation using Cd and Zn isotopes

    Get PDF
    It has been estimated that the acid mine drainage (AMD) impacted Odiel river basin in southern Spain supplies 0.37% and 15% of the global riverine fluxes of Cd and Zn to the oceans, respectively (Sarmiento et al., 2009). However, the behaviour of Cd and Zn in the Ria of Huelva estuary, which connects the Odiel and Tinto watersheds with the Gulf of Cadiz, has yet to be fully investigated. Furthermore, very few studies have investigated Cd and Zn isotope behaviour in estuaries worldwide. This study presents Cd and Zn concentrations and isotopic compositions for the Ria of Huelva estuary and surrounding watersheds, sampled in 2017 and 2019. Sulfide-rich rock samples extracted from three mines yield Cd and Zn isotope compositions that range from ā€“0.14ā€° to +0.07ā€° (n = 4) for Ī“114Cd and ā€“0.01ā€° to +0.29ā€° (n = 4) for Ī“66Zn. However, a uniform riverine signal of about +0.02ā€° for Cd and +0.17ā€° for Zn indicates that tracing of individual mining regions using Cd and Zn isotopes is challenging. Limited variability was observed in dissolved Ī“114Cd values throughout the watershed, including AMD, the estuary, and the Gulf of Cadiz, with a mean value of Ā±0.00 Ā± 0.13ā€° (n = 25, 2 SD; excludes one AMD outlier, at +0.48ā€°), including both 2017 and 2019 data. By contrast, Ī“66Zn values ranged from ā€“0.12ā€° to +0.35ā€° (n = 28) for the same geographical and temporal scope. In May 2017, a large spill from an abandoned mine, La Zarza, resulted in a drastic increase in the concentrations of trace metals reaching the estuary compared to 2019, but no impact of this mine spill on Cd or Zn isotope compositions is observed. In 2019, an increase in Ī“66Zn values in the estuary coincided with high pH values (up to pH = 8.8) and chloride concentrations (2.73%), which may reflect an alkaline anthropogenic input from the active neighbouring industrial complex. Overall, Cd concentrations and isotope compositions in the estuary are largely consistent with conservative mixing behaviour. By contrast, Zn behaviour is non-conservative, with removal of 49 to 97% of dissolved riverine Zn in the estuary during the period 2017 to 2019, associated with a relatively small isotopic shift to lighter Zn isotope compositions. Removal of Zn to the particulate phase in the Ria of Huelva estuary therefore largely attenuates high riverine Zn fluxes from AMD, indicating that previously estimated Odiel river basin Zn fluxes were overestimated. Nevertheless, the variable but generally light AMD Cd and Zn isotope compositions, coupled with high dissolved metal concentrations, suggest that Cd and Zn isotopes may be useful tracers of regionally averaged AMD inputs to the Gulf of Cadiz and beyond
    • ā€¦
    corecore