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Abstract 

Geochemical provenance studies of glacial-marine sediments provide a powerful approach to 

describe subglacial geology, sediment transport pathways, and past ice sheet dynamics. The marine-

based West Antarctic Ice Sheet (WAIS) is considered highly vulnerable to ocean warming and sea 

level rise that is likely to cause its rapid and irreversible retreat. Studies of its past response to 

climate change are hence essential for projecting its future behaviour. The application of radiogenic 

and trace element provenance studies for past ice sheet reconstructions requires surveying the 

geographic variability of geochemical compositions of glaciomarine sediments. In this study, we 

characterize the provenance of the detrital fraction of 67 Late Holocene marine sediment samples 

collected off the Pacific margin of West Antarctica (60°W to 160°W), including 40Ar/39Ar ages of 

individual hornblende and biotite grains (>150μm), as well as Sr and Nd isotope and trace element 

composition of the fine-grained (<63μm) sediment fraction. Overall, this approach allows 

differentiating West Antarctica into five source regions: the Antarctic Peninsula, Bellingshausen Sea, 

Amundsen Sea, Wrigley Gulf-Hobbs Coast and Sulzberger Bay. Minor geochemical variability is found 

within each individual sector due to local variability in onland geology. 40Ar/39Ar ages of iceberg-

rafted hornblende and biotite grains record primarily Carboniferous to Lates Quaternary ages (~0 to 

380 Ma), with a notable age peak of ~100 Ma, associated with plutonic intrusions or deformation 

events during the mid-Cretaceous. Permian-Jurassic 40Ar/39Ar ages are widespread in the Amundsen 

Sea sector, marking episodes of large-volume magmatism along the long-lived continental margin. 

Metasedimentary rocks and Late Cenozoic alkali basalts in West Antarctica cannot be detected using 

detrital hornblende and biotite 40Ar/39Ar ages due to the absence or small grain-size (i.e. <150μm) of 

these minerals in such rocks. These sources can however be readily recognized by their fine-grained 

geochemical composition. In addition, geographic trends in the provenance from proximal to distal 

sites provide insights into major sediment transport pathways. While the transport of fine-grained 

detritus follows bathymetric cross-shelf troughs, the distribution of iceberg-rafted grains shows 

influence by transport in the Antarctic Coastal Current. Our study provides the first systematic 
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geochemical characterisation of sediment provenance off West Antarctica, and highlights the 

importance of combining multiple provenance approaches in different size fractions of glacial-

marine sediments, and paves the way to investigate past WAIS dynamics.  

 

Key words: Geochemical provenance, West Antarctic Ice Sheet, subglacial geology, sediment 

transport pathways   
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1. Introduction 

The West Antarctic Ice Sheet (WAIS) holds enough ice to raise global sea-level by 4.3 m if completely 

melted (Fretwell et al., 2013). Its base rests largely on surfaces of bedrock and sedimentary strata 

that are well below sea level with an inland-deepening slope, making the WAIS vulnerable to 

changing environmental conditions (e.g. Oppenheimer, 1998), particularly to ocean warming and 

sea-level rise via the marine ice sheet instability hypothesis (e.g. Rignot and Jacobs, 2002; Schoof, 

2007; Katz and Worster, 2010; Jacobs et al., 2011; Joughin and Alley, 2011; Pritchard et al., 2012) 

and/or marine ice cliff instability (DeConto and Pollard, 2016; Wise et al., 2017). This vulnerability is 

confirmed by modern observational data, which show thinning of ice shelves, acceleration of ice 

stream flow, and overall mass loss in the Pacific sector of the WAIS (Payne et al., 2004; Rignot et al., 

2008; Pritchard et al., 2009, 2012; Shepherd et al., 2012; Mouginot et al., 2014). Most of the 

current retreat occurs in the Amundsen Sea sector, which drains approximately ~35% of the WAIS. 

High rates of mass loss originate from the Pine Island and Thwaites glaciers, with potential collapse 

being hypothesised to occur in as little as ~400 years (Oppenheimer, 1998 and references therein; 

Vaughan et al., 2011; Joughin et al., 2014). The proposed mechanism for collapse is an irreversible 

retreat of the grounding line (Schoof, 2007; Katz and Worster, 2010), facilitated by the landward 

dipping bed under the WAIS. Thereby, the bathymetric setting of the continental shelf may trigger 

initial retreat by allowing relatively warm Circumpolar Deep Water that is upwelling onto the shelf to 

enter sub-ice shelf cavities through cross-shelf troughs carved by past ice stream advances (e.g. 

Walker et al, 2007; 2013; Jenkins et al., 2010, 2016). 

While modern and historical processes leading to ice-sheet loss are increasingly well studied 

and understood (e.g. Hillenbrand et al. 2017; Smith et al., 2017; Turner et al., 2017), 

reconstructions of the past stability of the WAIS are still sparse (e.g. Scherer et al., 1998; 

Hillenbrand et al., 2002, 2009a; Pollard and DeConto, 2009; Naish et al., 2009; Vaughan et al., 

2011). One promising tool to learn about past ice stability has been to study the provenance of 
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marine detrital sediments. Radiogenic isotope fingerprinting and dating has been successfully 

applied to reconstruct ice sheet history in the Northern Hemisphere (e.g. Gwiazda et al., 1996; 

Hemming et al., 1998, Hemming and Hajdas, 2003; Peck et al., 2007; Downing et al., 2013; Reyes et 

al., 2014) and around East Antarctica (e.g. Williams et al., 2010; Pierce et al., 2011, 2014, 2017; 

Cook et al., 2013, 2014, 2017). Geochemical (i.e. radiogenic isotope composition) studies of glacially 

derived sediments with a West Antarctic provenance have so far been restricted to the Ross Sea 

(Farmer et al., 2006; Licht and Palmer, 2013; Licht et al., 2014), glacial till samples from distinct ice 

streams (Farmer and Licht, 2016; Licht et al., 2014; Welke et al., 2016), and only a few marine 

sediment core top analyses along the West Antarctic margin (Walter et al., 2000; Roy et al., 2007; 

van de Flierdt et., 2007; Hemming et al., 2007). 

In this study, we close this gap and describe the detailed geochemical provenance of glacially 

derived Late Holocene sediments along the Pacific margin of West Antarctica. Our primary 

motivation is to identify isotopic and geochemical fingerprints for individual WAIS sectors, and to 

characterize its subglacial geology building on the pioneering work of Roy et al. (2007), van de 

Flierdt et al. (2007) and Hemming et al. (2007). Paramount to such studies is the knowledge of the 

geological history of the exposed and subglacial bedrock (Figs. 1, 2) and its overall geochemical 

variability. Outcrop studies, integrated with airborne and field geophysical campaigns have 

significantly increased our knowledge of the hidden bedrock below the Antarctic Ice Sheet (e.g. 

Ferraccioli et al., 2009; Smith et al., 2013; Jordan et al., 2013a,b; Aitken et al., 2014). Investigations 

of sediments that are shed from Antarctica can also contribute to understanding subglacial geology 

as well as providing the groundwork for using this approach to document the past history of the ice 

sheets. Here we present results on the geochemical signature of 67 surface sediment samples using 

40Ar/39Ar ages of individual hornblende and biotite grains (>150μm or >63μm), and strontium (Sr) 

and neodymium (Nd) isotope ratios and trace element compositions of the fine-grained fraction 

(<63μm). We present these results in the context of published studies of the geology and 

geochemistry of West Antarctica from field observations and geophysical investigations. By 
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combining different provenance tools, we characterize source sectors of glacigenic detritus, a vital 

precondition for unravelling the history of the WAIS by tracing down-core provenance changes in 

marine sediment records. We place a particular emphasis on the Amundsen Sea sector, and relate 

our new sediment provenance results to specific ice drainage signatures, as well as pathways and 

transport mechanisms that may deliver sediments to their sites of deposition. 

2. Regional Framework of West Antarctica 

2.1. Tectonic history 

The Antarctic continent preserves a geological record from ~3.5 Ga to present. Most known 

Precambrian rocks are found in East Antarctica (see Boger, 2011 for a recent review), while West 

Antarctica generally has a younger, largely Phanerozoic, geological history. West Antarctica consists 

of four micro-continental blocks: the Antarctic Peninsula, Ellsworth-Whitmore Mountains, Thurston 

Island and Marie Byrd Land (Dalziel and Elliot, 1982) (Figs. 1, 2). 

The ‘birth’ of West Antarctica is largely associated with the onset of the accretionary Terra 

Australis (Ross) Orogeny (~510 Ma). The Terra Australis Orogeny took place after suturing of West 

Gondwana (South American and South African shields) and the Australo-Antarctic plates (Kuunga 

Orogen), which shifted the locus of active subduction from between the pre-collision complexes of 

Gondwana towards the Proto-Pacific margin (Cawood, 2005). This orogenic event resulted in 

deformation of passive margin sediments, formation of back-arc basins with quiescent 

sedimentation (Ellsworth-Whitmore Mountains, Fig. 1), and led to arc-type plutonism and 

subsequent crustal accretion onto the Gondwana margin (Cawood, 2005; Boger, 2011). 

Convergence along the Pacific margin of Gondwana led to deposition and subsequent 

accretion of Cambrian-Ordovician turbiditic sequences, and intrusion of Devonian-Carboniferous 

(~375–345 Ma) granitoids. Relicts of these Early Palaeozoic rocks are found in the Ross province of 

Marie Byrd Land (Pankhurst et al., 1998; Mukasa and Dalziel, 2000), on Thurston Island (Pankhurst 
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et al., 1993; Riley et al., 2017) and in the Eastern Domain of the Antarctic Peninsula (Millar et al., 

2002), considered as the innermost and oldest arc-terranes in West Antarctica (Vaughan and Storey, 

2000) (Figs. 1, 2).  

 

 

Figure 1: Tectonic reconstruction of West Antarctica during the Early Palaeozoic to Cretaceous 

(modified from Boger, 2011). AP – Antarctic Peninsula, MB(a) – Amundsen Province of Marie Byrd 

Land, related to the Central Domain, MB(r) – Ross Province of Marie Byrd Land, related to the 

Eastern Domain, CP – Campbell Plateau. Indices: e – Eastern Domain, c – Central Domain, w – 

Western Domain.  

 

During the late Carboniferous, collision of Gondwana with Laurentia terminated the Terra 

Australis Orogeny, which was followed by the Gondwanide Orogeny (Fig. 1). This transition marked 

the initiation of a series of magmatic arc terranes, largely calc-alkaline granodiorite, diorite, and 

monzogranite intrusions in the Central Domain (Amundsen Province) of Marie Byrd Land and in the 

Central Domain of the Antarctic Peninsula during the Late Palaeozoic-Mesozoic. Notable episodes of 
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magmatism occurred during the late Triassic-early Jurassic (236-199 Ma), mid-Jurassic (~180-160 

Ma) and Early to Late Cretaceous (~140-80) (Leat et al., 1995; Storey et al., 1996). Though initially 

disconnected from Antarctica, these terranes became accreted to the continent by the end of the 

Cretaceous. 

The outermost terrane belt in West Antarctica, the Western Domain of the Antarctic Peninsula 

(Vaughan and Storey, 2000) is composed of Carboniferous to Late Cretaceous accretionary 

sedimentary rocks such as those found on Alexander Island (Fig. 2). This terrane accreted to the 

West Antarctic margin by 103 – 107 Ma, leading to back-arc plutonism and metamorphism of the 

Western and Central Domain in the mid-Cretaceous (Wendt et al., 2008; Vaughan et al., 2012a). 

Gondwana break-up led to extensive extrusion of Jurassic volcanic rocks documented by 

outcrops in the Antarctic Peninsula, and resulted in rifting away of Zealandia in the Cretaceous 

(Weaver et al., 1992; Pankhurst et al., 2000; Korhonen et al., 2010). Plutonism on West Antarctica 

continued until the Cenozoic with a diachronous eastward cessation of subduction (Larter and 

Barker, 1991; Leat et al., 1995; Larter et al., 2002; Cunningham et al., 2002; Mukasa and Dalziel, 

2000). This was followed and accompanied by the extrusion of the widespread Late Cenozoic alkali 

basalts (e.g. Futa and LeMasurier, 1983; Hole and LeMasurier, 1994), which crop out extensively in 

central West Antarctica, especially the Marie Byrd Land volcanic province (e.g. LeMasurier and Rex, 

1991). 
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Figure 2: Simplified geological map of West Antarctica, including major geological units discussed in 

the text (Futa and LeMasurier, 1983; Storey et al., 1988; Pankhurst et al., 1993; McCarron and 

Smellie, 1998; Mukasa and Dalziel, 2000; Ferraccioli et al., 2002; Korhonen et al., 2010; Burton-

Johnson and Riley., 2015). Thin blue dotted lines on the continent represent divides between major 

ice drainage basins, and brown dotted lines mark approximate boundaries between tectonic 

domains (Pankhurst et al., 1998; Vaughan and Storey, 2000). Grey dashed line on the continental 

shelf outlines bathymetric troughs, dashed black lines indicate the approximate location of the shelf 

break, and dotted line offshore marks position of the Southern Boundary of the Antarctic 

Circumpolar Current (SBACC; Orsi et al., 1995). Sites of surface sediments analysed in this study are 

shown as grey circles and numbers refer to their position in Table 1. Abbreviations: Abb – Abbot Ice 

Shelf; AS: Amundsen Sea; Cos – Cosgrove Ice Shelf; Dot – Dotson Ice Shelf; Ed. VII – Edward VII 

Peninsula: EWM – Ellsworth-Whitmore Mountains; FR – Ford Ranges; JM – Jones Mts; HN – Haag 

Nunataks; HM – Hudson Mts ; MM – Mt Murphy; MP – Mount Petras; MT – Mt Takahe; SSI – South 

Shetland Islands.; TI – Thurston Island; WAIS – West Antarctic Ice Sheet; WC – Walgreen Coast. Inset: 

Digital elevation model of Antarctica (Bamber et al., 2009) with major crustal blocks of West 

Antarctica (Dalziel and Elliot, 1982). White contours denote bedrock above modern sea-level 

(Fretwell et al., 2013). Blue arrows denote main surface ocean currents (Gladstone et al., 2001; 

Assmann et al., 2005; Murphy et al., 2013) and orange arrows denote deep (i.e. down to ca. 1000 m 

water depth) currents (Holland et al., 2010; Assmann et al., 2013; Murphy et al., 2013; Ha et al., 

2014). Palaeo-ice streams are shown in grey. 

2.2. Oceanography 

The dominant oceanographic feature off (West) Antarctica is the eastward flowing Antarctic 

Circumpolar Current (ACC), which is driven by the West Wind Drift, creating a clockwise flow around 

the Antarctic continent (Orsi et al., 1995; Sokolov and Rintoul, 2009). In the eastern Pacific sector of 

West Antarctica the Southern Boundary of the ACC (SBACC) follows approximately the shelf break 
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(Sokolov and Rintoul, 2009), but the SBACC runs slightly north of it in the eastern Amundsen Sea 

and deviates further away from the continent towards the Ross Sea (Orsi et al., 1995; Walker et al., 

2013) (Fig. 2). Wind stress and buoyancy forcing drive the westward flowing Antarctic Coastal 

Current, which spans the area between the SBACC and the coast (e.g. Stammerjohn et al., 2015; Kim 

et al., 2016a), creating a westward flowing surface current (Fig. 2). This general circulation pattern is 

complicated by local winds and large cyclonic gyres, such as in the Bellingshausen Sea (Fig. 2) and 

the Ross Sea. On the shelf of the Bellingshausen Sea, for instance, significant quantities of icebergs 

initially drift westwards with the coastal current but are then directed northwards near Thurston 

Island eventually joining the eastward flowing ACC (Gladstone et al., 2001; Sokolov and Rintoul, 

2009). In the Pacific sector of the Southern Ocean, deep warm water upwells onto the continental 

shelf (Fig. 2 inset), locally protrudes towards the coast via bathymetric cross-shelf troughs, which 

were eroded by WAIS advances during past ice ages, and causes the bases of floating ice shelves to 

melt (e.g. Walker et al., 2007; Thoma et al., 2008; Jenkins et al., 2010; Arneborg et al., 2012; 

Randall-Goodwin et al., 2015). In the Amundsen Sea Embayment (ASE) the resulting glacial 

meltwater is detected in the mid-layer of the water column at about 400-500 m and flows 

northward along incised troughs towards the shelf break (e.g. Kim et al., 2016b). 

The velocities of ocean currents measured and/or modelled in the surface and deep waters of 

our study area are on average ca. ≤5 cm/s, with a maximum of 22 cm/s (Assmann et al. 2005; 

Wåhlin et al., 2010, 2012, 2013, 2016; Jacobs et al., 2011, 2013; Arneborg et al., 2012; Carvajal et 

al., 2013; Walker et al., 2013; Ducklow et al., 2015; Kim et al., 2015; Randall-Goodwin et al., 2015). 

Exceptions to this are the westward flowing Antarctic Coastal Current in front of the Dotson Ice 

Shelf, and a local current within the Amundsen Polyna. The former current reaches a speed up to 40 

cm/s in a narrow layer at 70 m water depth (Kim et al., 2016a), but this speed decreases to below 22 

cm/s when integrated over the entire water column (Randall-Goodwin et al., 2015). The latter 

Amundsen Polynya current is characterized by a flow speed ≤27 cm/s detected at 430 m water 
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depth north of the Dotson and westernmost Getz ice shelves (Kim et al., 2016a). These velocities will 

become important when discussing transport pathways of detrital mineral grains later on. 

3. Approach and samples  

3.1. Approach to provenance fingerprinting 

Analysis of the provenance of marine detrital sediments requires the consideration of a variety of 

glaciological and geological factors (see review by Licht and Hemming, 2017). Glacial influence on 

provenance records is exerted by preferential subglacial erosion of specific substrates. Glacial-

marine transport and depositional processes in the ocean can furthermore introduce sorting and 

hence affect mineral assemblages in sediments. Geologically, onland bedrock needs to provide 

sufficient geochemical heterogeneity in order to produce distinct isotopic fingerprints. In addition, 

different rock types and mineral components are prone to be disproportionately represented in 

different grain-size fractions. Plutonic and high-grade metamorphic rocks, for instance, are rich in 

coarse-grained minerals, and are therefore likely to be over-represented in the coarse fraction of 

marine sediments. In contrast, sedimentary rocks consist of recycled continental material, and 

typically show a finer texture as well as depletion in minerals that are less resistant to chemical and 

physical weathering, such as hornblende and biotite (e.g. Pierce et al., 2014). Erosion of sedimentary 

rocks would lead to enrichment of these minerals in the fine fraction of glacial-marine sediments. 

To limit the risk of neglecting or over-representing a particular rock type, we apply different 

geochemical tracers and analyse two different size-fractions of the same sediment sample. We 

investigate 40Ar/39Ar ages of ice-rafted (>150μm) hornblende and biotite grains, as well as Sr and Nd 

isotope and trace element compositions of fine-grained (<63μm) detritus. Dating of individual grains 

from marine sediments has been shown to provide powerful insights into the thermo-metamorphic 

history of the parent rocks. In the Southern Ocean, detailed studies on the provenance of East 

Antarctic glacial-marine sediments have shed light on previously documented as well as 
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undiscovered geological provinces below the ice (e.g. Roy et al., 2007; Cook et al., 2014, 2017; 

Pierce et al., 2014, 2017). Even though most studies so far have focused on 40Ar/39Ar analysis of 

hornblende grains, recent work has elegantly demonstrated how biotite can provide complementary 

information on source rock metamorphism (Pierce et al., 2011, 2014). Both minerals are major rock-

forming constituents and are present in a variety of lithologies. The advantage of using the dual 

dating approach relies on the fact that different lithologies might contain different amounts of 

hornblende and biotite grains. Additionally, hornblende and biotite minerals have different closure 

temperatures for argon of ~550°C and ~300°C, respectively (Harrison, 1982; Harrison et al., 1985) 

and hence reflect different points on the cooling path following a major extrusive or tectono-

metamorphic event. The distinct attributes between both chronometers can be exploited to extract 

information on the source rock, only if both minerals originate from the same source. In the marine 

environment, however, selective transport pathways may compromise such coupling. Critical factors 

to consider are ocean current speeds, which determine the grain sizes and types of detrital mineral 

grains being eroded, transported, or deposited and hydraulic equivalence (i.e settling behaviour) of 

the different mineral types, which determines preferential transport and deposition of one mineral 

grain type over another.  

In order to overcome the potential bias created by using mineral tracers, which rely on the 

existence of rocks containing these minerals, we also chose to investigate Sr and Nd isotopic 

compositions and trace element geochemistry of fine-grained (<63μm) detritus. Fine-grained 

material can be eroded from any type of geology, and its radiogenic isotope composition depends on 

the age and lithology of the source formation (Taylor and McLennan, 1995). Hence, fine-grained Sr 

and Nd isotopic compositions have the potential to record an integrated signature of bedrock 

eroded under an ice stream or ice margin (Hemming et al., 1998; Farmer et al., 2003, 2006; Colville 

et al., 2011; Pierce et al., 2011; Cook et al., 2013; 2017; Farmer and Licht, 2016). Samarium (Sm) 

and Nd are not fractionated during continental erosion due to their nearly equal incorporation in 

most rock forming minerals. Neodymium model ages, based on the long-lived 147Sm to 143Nd decay 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

system, are thus effective at reconstructing the mantle extraction age of precursor material of 

sediments (Goldstein and Hemming, 2003). Different minerals tend to have very similar Sm/Nd 

ratios (e.g. Bayon et al., 2009, Garçon et al., 2013, Rickli et al., 2014), making it unlikely that Nd 

isotopic compositions in sediments are majorly influenced by sedimentary sorting and/or 

weathering. In contrast, comminution of minerals with variable Rb/Sr ratios can produce grain-size 

effects in the 87Sr/86Sr ratio, particularly due to the enrichment of clay minerals and biotite in the 

fine-grained fraction (e.g. Eisenhauer et al., 1999; Goldstein and Hemming, 2003). Additionally, 

87Sr/86Sr ratios can be fractionated during continental weathering due to the different solubility of 

the parent isotope 87Rb compared to the daughter isotope 87Sr (e.g. Blum and Erel, 1997). 

3.2. Samples and site selection 

For this study, we selected 67 proximal to distal seafloor surface sediment samples from the Pacific 

margin of West Antarctica. In total, 59 samples were provided from core repositories of the British 

Antarctic Survey (Cambridge), the Alfred-Wegener Institute for Polar and Marine Research 

(Bremerhaven), and the Antarctic Marine Geology Research Facility at the Florida State University 

(formerly at Tallahassee, FL). We additionally complemented our sample selection by eight samples 

previously studied by Roy et al. (2007), which we picked for 40Ar/39Ar age analysis of biotite grains, 

not carried out in the original study. Table 1 provides a full description of the site locations and 

water depths, coring devices, and sample depths. Sites proximal to individual major ice streams were 

selected to identify the geochemical fingerprint of each ice drainage basin and therefore to constrain 

subglacial geology (Fig. 2). Distal sites were selected to test whether provenance signatures from the 

terminus of an active ice stream can be traced offshore, with the future goal to reconstruct ice 

history through time by analysing down-core records. Most sampling sites are located in the ASE, the 

modern-day locus of major ice stream retreat (e.g. Rignot et al., 2008, 2014), and proposed site of 

substantial WAIS retreat in the past (e.g. Vaughan et al., 2011).  
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Most sediment samples used in this study are seafloor surface samples collected with box and 

multiple corers, and thus are of modern or at least Late Holocene age, which has been confirmed by 

AMS 14C dating and/or 210Pb analyses for several of these samples (Hillenbrand et al., 2010a,b, 2013; 

Smith et al., 2011, 2014). Other samples were chosen solely due to their geographical position. Even 

though no chronological constraints were available for some of those samples, e.g. shelf samples 

from Sulzberger Bay, the stratigraphic position of these samples near the seafloor surface assures 

that they are most likely not older than Late Holocene, which is evident from AMS 14C ages of such 

samples in the Bellingshausen, Amundsen and Ross Seas and on the western Antarctic Peninsula 

margin (The RAISED Consortium, 2014). We followed this approach to avoid the potential influence 

of past changes in erosion or sediment transport/deposition on the provenance of the studied 

sediments.  

As detailed in section 2, current speeds in the study area are typically ≤22 cm/s. This flow 

velocity is too low to move sand particles (≥63µm), which would require current speeds exceeding 

26-29 cm/s (e.g. McCave et al., 2017). Large sheeted (flaky) biotite grains have a hydraulic 

equivalence to smaller (bulky) hornblende grains according to Komar et al. (1984) and Garzanti et 

al. (2008, 2009). These studies concluded that coarse grained (>150m) biotite grains are 

hydraulically equivalent to quartz grains with a size exceeding ~75m. Such grains would not be 

moved by the ocean currents typical for the West Antarctic margin, allowing interpretation of biotite 

grains >150m as subglacial debris, which was released by grounded ice directly at the coast or 

transported by icebergs further offshore, alongside hornblende grains >150m. Several samples, 

however, have been picked for hornblende and biotite grains from the 63 – 150m fraction due to a 

low amount of grains in these samples. Due to the weak ocean currents in the study area, bulky 

hornblende grains from the 63 – 150m fraction are likely unaffected by hydrodynamic sorting and 

provide the same lithologic information as the coarser >150m size fraction. Sediment samples from 

sites 13 and 41 (Table 1, Fig. 2) were, however, picked for biotite grains from the 63 – 150m 
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fraction only. These results will hence be discussed separately (i.e. potential for selective mineral 

transport by ocean currents).  

Table 1: 39Ar/40Ar ages analysed in ice-rafted (>150 μm or >63 μm) hornblende and biotite grains 

from surface sediments off West Antarctica 

Cor
e 

Sit
e 

Site 
locatio

n 

Core 
depth 
(cm) 

Se
cto
r a 

Size 
fracti

on Gear 

Lati
tut
de 

Lon
gitu
de 

Water 
depth 

(m) 

Hornbl
ende 
grains 

Biotit
e 

grain
s 

Reference
b 

1 
DF86-

48  28-34 AP 
 

piston 
corer 

-
62.
68 

-
59.
74 1234 

   

2 
DF85-

53 39-44 AP 
>150
μm 

piston 
corer 

-
64.
56 

-
63.
16 201 55 

 
this study 

3 

PD88-
111 

Grab37 
Surfac

e AP 
 

surface 
grab 

-
65.
14 

-
63.
97 240 

   

4 

PD88-
111 

Grab41 
Surfac

e AP 
 

surface 
grab 

-
65.
23 

-
64.
09 200 

   

5 
ELT05-

22 4-6 AP 
>150
μm 

piston 
corer 

-
65.
95 

-
70.
25 373 91 7 

Roy et al., 
2007; this 
study 

6 
DF85-

82 28-33 AP 
>150
μm 

piston 
corer 

-
68.
24 

-
67.
50 275 39 

 
this study 

7 
PS2524

-1 0-1 AP 
 

box 
corer 

-
68.
49 

-
72.
72 458 

   

8 
ELT05-

20 2-4 AP 
>150
μm 

trigger 
core 

-
67.
18 

-
74.
78 2926 37 7 

Roy et al., 
2007; this 
study 

9 BC470 0-2 BS 
 

box 
corer 

-
69.
09 

-
76.
39 670 

   

10 
ELT42-

09 0-2 BS 
>150
μm 

piston 
corer 

-
69.
99 

-
80.
39 567 30 19 

Roy et al., 
2007; this 
study 

11 BC361 0-1 BS 
>150
μm 

box 
corer 

-
71.
99 

-
76.
55 633 38 38 this study 

12 GC362 0-1 BS 
 

box 
corer 

-
72.
60 

-
80.
83 846 

   

13 BC364 0-1 BS 
63μ
m-

box 
corer 

-
72.

-
83. 1010 n.m. 20 this study 
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2mm 98 44 

14 BC369 0-2 BS 

150μ
m-

2mm 
box 

corer 

-
71.
58 

-
82.
86 587 47 44 this study 

15 BC459 0-1 BS 
>150
μm 

box 
corer 

-
70.
61 

-
86.
25 676 61 46 this study 

16 
PS2543

-3 0-1 BS   
multi-
corer 

-
70.
95 

-
89.
36 537       

17 
ELT11-

19 0-2 
AS
-E 

>150
μm 

trigger 
corer 

-
70.
42 

-
99.
25 3808 63 16 

Roy et al., 
2007; this 
study 

18 
ELT11-

18 2-4 
AS
-E 

>150
μm 

piston 
corer 

-
70.
14 

-
102
.82 3786 24 5 

Roy et al., 
2007; this 
study 

19 
ELT11-

17 2-4 
AS
-E 

>150
μm 

trigger 
corer 

-
70.
17 

-
106
.64 3456 6 5 

Roy et al., 
2007; this 
study 

20 
PS58/2

54-2 0-2 
AS
-E 

>150
μm 

multi-
corer 

-
69.
31 

-
108
.45 4016 14 7 this study 

21 
PS75/1

92-2 0-1 
AS
-E 

 

giant 
box 

corer 

-
71.
74 

-
103
.33 793 

   

22 
PS69/2

55-3 0-1 
AS
-E 

150μ
m-

2mm 

giant 
box 

corer 

-
71.
80 

-
104
.36 654 31 

 
this study 

23 
PS69/2

51-1 0-1 
AS
-E 

 

giant 
box 

corer 

-
72.
11 

-
104
.81 573 

   

24 
DF85-
109 11-17 

AS
-E 

>150
μm 

piston 
corer 

-
72.
49 

-
104
.48 567 30 

 
this study 

25 BC451 0-1 
AS
-E 

150μ
m-

2mm 
box 

corer 

-
71.
87 

-
106
.04 568 49 51 this study 

26 BC455 0-1 
AS
-E 

>150
μm 

box 
corer 

-
71.
07 

-
105
.08 807 54 44 this study 

27 BC485 0-3 
AS
-E 

150μ
m-

2mm 
box 

corer 

-
72.
73 

-
107
.29 692 15 26 this study 

28 
DF85 
96-1 83-88 

AS
-E 

>150
μm 

piston 
corer 

-
73.
30 

-
103
.62 786 30 n.m. this study 

29 
PS69/2

99-1 0-1 
AS
-E 

150μ
m-

2mm 

giant 
box 

corer 

-
73.
44 

-
103
.65 718 24 57 this study 

30 BC482 0-2 
AS
-E 

 

box 
corer 

-
73.

-
106 1113 
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89 .27 

31 BC476 0-2 
AS
-E 

 

box 
corer 

-
74.
48 

-
104
.42 1120 

   

32 
PS75/1

59-1 0-1 
AS
-E 

63μ
m-

2mm 
gravity 
corer 

-
74.
80 

-
102
.36 1046 1 n.m. this study 

33 
PS75/1

68-1 0-1 
AS
-E 

63μ
m-

2mm 
gravity 
corer 

-
74.
61 

-
105
.87 652 9 n.m. this study 

34 BC442 0-1 
AS
-E 

150μ
m-

2mm 
box 

corer 

-
71.
68 

-
113
.01 608 47 53 this study 

35 BC443 0-1 
AS
-E 

150μ
m-

2mm 
box 

corer 

-
71.
28 

-
113
.46 1789 55 39 this study 

36 
PS69/2

81-3 0-1 
AS
-W 

 

giant 
box 

corer 

-
74.
33 

-
110
.21 213 

   

37 

NBP07
-02 

SMG6 
Surfac

e 
AS
-W 

 

surface 
grab 

-
74.
21 

-
111
.90 343 

   

38 BC420 0-2 
AS
-W 

>150
μm 

box 
corer 

-
74.
14 

-
112
.86 806 24 15 this study 

39 

NBP00
-01 

KC24  13-19 
AS
-W 

 

kasten 
corer 

-
74.
17 

-
113
.18 301 

   

40 BC421 0-1 
AS
-W 

>150
μm 

box 
corer 

-
73.
62 

-
113
.71 833 32 21 this study 

41 BC412 0-1 
AS
-W 

63μ
m-

2mm 
box 

corer 

-
73.
92 

-
115
.86 1128 19 33 this study 

42 

NBP00
-01 

PC22  5-10 
AS
-W 

 

piston 
corer 

-
74.
06 

-
115
.46 1171 

   

43 

NBP00
-01 

KC21  5-10 
AS
-W 

>150
μm 

kasten 
corer 

-
74.
03 

-
115
.84 1049 35 

 
this study 

44 

NBP07
-02 

SMG5 
Surfac

e 
AS
-W 

 

surface 
grab 

-
74.
02 

-
117
.30 350 

   

45 
PS69/2

75-2 0-1 
AS
-W 

>150
μm 

giant 
box 

corer 

-
73.
89 

-
117
.55 1517 11 37 this study 

46 BC407 0-2 
AS
-W 

>150
μm 

box 
corer 

-
73.
21 

-
115
.24 815 6 18 this study 

47 
PS69/2

83-5 0-1 
AS
-W 

150μ
m-

giant 
box 

-
72.

-
115 612 52 44 this study 
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2mm corer 76 .38 

48 BC431 0-1 
AS
-W 

>150
μm 

box 
corer 

-
72.
30 

-
118
.16 512 45 42 this study 

49 BC433 0-1 
AS
-W 

150μ
m-

2mm 
box 

corer 

-
71.
56 

-
118
.31 1722 43 41 this study 

50 BC492 0-1 
AS
-W 

>150
μm 

box 
corer 

-
71.
15 

-
119
.96 2073 n.m. 26 this study 

51 
ELT33-

12 2-6 
AS
-W 

>150
μm 

piston 
corer 

-
70.
00 

-
120
.17 2615 27 18 

Roy et al., 
2007; this 
study 

52 
ELT33-

11 0-2 
AS
-W 

>63μ
m 

piston 
corer 

-
70.
10 

-
122
.26 3639 10 

 

Roy et al., 
2007 

53 
PS2545

-1 0-1 
AS
-W 

 

giant 
box 

corer 

-
73.
16 

-
121
.95 636 

   

54 

NBP00
-01 

KC17 7-13 
AS
-W   

kasten 
corer 

-
73.
79 

-
123
.53 891       

55 

NBP99
-02 

PC21 8-13 
W
H 

>150
μm 

piston 
corer 

-
74.
08 

-
127
.79 702 9 5 this study 

56 

NBP99
-02 

TC23 0-3 
W
H 

 

trigger 
weight 
corer 

-
73.
78 

-
127
.86 726 

   

57 

NBP00
-01 

PC14 1-3 
W
H 

>150
μm 

piston 
corer 

-
73.
11 

-
128
.32 591 51 

 
this study 

58 
PS75/1

33-1 0-1 
W
H 

>150
μm 

giant 
box 

corer 

-
74.
34 

-
133
.08 474 19 40 this study 

59 
PS75/1

30-2 0-1 
W
H 

>150
μm 

giant 
box 

corer 

-
74.
45 

-
134
.15 793 22 40 this study 

60 

DF83-
III 

BC28 2-4 SB 
>63μ

m 
box 

corer 

-
76.
83 

-
152
.48 1024 18 

 
this study 

61 

NBP96
-01 

PC12 0-3 SB 
 

(giant) 
piston 
corer 

-
76.
74 

-
152
.85 881 

   

62 

NBP96
-01 

TC13 0-3 SB 
 

trigger 
weight 
corer 

-
76.
65 

-
153
.36 739 

   

63 

NBP99
-02 

Grab20 
Surfac

e SB 
 

surface 
grab 

-
76.
41 

-
154
.82 458 

   

64 
DF83 
PC31 0-3 SB 

>63μ
m 

piston 
corer 

-
76.

-
154 713 5 

 
this study 
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60 .10 

65 

DF83-
III 

BC26A 1-3 SB 
>63μ

m 
box 

corer 

-
76.
95 

-
155
.62 1353 3 n.m. this study 

66 

NBP96
-01 

JTC11 0-3 SB 
 

trigger 
weight 
corer 

-
76.
78 

-
155
.44 392 

   

67 

DF83-
III 

BC33 
3.5-
5.5 SB   

box 
corer 

-
76.
63 

-
156
.40 770       

a) AP: Antarctic Peninsula sector, BS: Bellingshausen Sea, AS-E: eastern Amundsen Sea, AS-W: 

western Amundsen Sea, WH: Wrigley Gulf-Hobbs Coast, SB: Sulzberger Bay 

b) See Appendix S1 for complete dataset 
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4. Analytical procedures 

Sediment samples were freeze-dried, weighed, and wet sieved through a 63-micron sieve. The sand 

fraction (>63μm) was subsequently dry sieved at 150μm to obtain the >150μm fraction (Table 1). 

The fine-grained (<63μm) fraction was separated by gravitational settling, after which the clear 

supernatant was discarded, and sediment was dried in an oven at 60°C. Approximately 1g of <63μm 

sediment was leached with buffered acetic acid to remove calcium carbonate, followed by 0.02M 

hydroxylamine hydrochloride solution to extract Fe-Mn oxyhydroxide coatings (Rutberg et al., 

2000). Finally, the dried residue from leaching was thoroughly homogenised using an agate mortar. 

Hornblende and biotite grains were hand-picked from the coarse (>150μm) fraction for 

40Ar/39Ar age analysis on 43 of the 67 samples. Picking was extended to include the >63μm fraction 

only if too few grains were available in the >150μm fraction. Eight samples were exclusively picked 

from the 63 – 150m fraction, of which seven were picked for hornblende grains and two for biotite 

grains (Table 1; Appendix S1). Fresh (i.e. glassy or black) grains were hand-picked from the coarse 

fraction with weathering being relatively minor or negligible (see also Licht and Hemming, 2017). 

Single grains and monitor standards (Fish Canyon sanidine) were irradiated at the USGS reactor in 

Denver, CO. Calibration for the neutron flux was based on J-values calculated to normalize Fish 

Canyon sanidine ages to 28.201+/- 0.046 Ma (Kuiper et al., 2008). 40Ar/39Ar ages were calculated 

from measurements of gas released using a single-step CO2 laser fusion at the Argon Geochronology 

for the Earth Sciences (AGES) laboratory at Lamont-Doherty Earth Observatory. Argon isotope ratios 

were corrected for atmospheric argon (40Ar/36Ar = 298.6, Lee et al., 2006), procedural blanks and 

mass discrimination from frequent measurements of blanks and air pipettes. Nuclear interference 

corrections were made based on the values reported by Dalrymple et al. (1981). 

Radiogenic isotope (Sr, Nd) and trace element analyses were carried out on two separate 

aliquots (~50mg) from the residual and leached (i.e. detrital) <63μm sediment fraction. Aliquots 
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were weighed into pre-cleaned Savillex vials and dissolved in a mixture of HF (2ml), HNO3 (1ml) and 

HClO4 (0.8ml) for three to four days on a hotplate until no visible particles remained. After digestion, 

one set of aliquots were dried and taken up in acid for the three-stage ion exchange 

chromatography in preparation for Sr and Nd isotope analysis. The Sr fraction was extracted from 

the sample matrix using Eichrom’s Sr Spec resin in HNO3 medium (similar to Hemming et al., 2007, 

modified from Pin and Bassin, 1992). The sample matrix was collected from this step and rare earth 

elements (REEs) were subsequently separated from the sample matrix using a cation exchange resin 

(AG50W-X8) in HCl medium (following the specific method of Struve et al., 2016). The Nd fraction 

was subsequently separated from the other REEs using Ln-Spec resin in HCl medium (modified after 

Pin and Zalduegui, 1997). 

Dried Sr cuts were re-dissolved in 6M HCl, loaded as 1μl aliquots on degassed tungsten 

filaments, and covered by 1μl of TaCl5 activator solution. Strontium isotopes were measured using a 

Trition Thermal Ionisation Mass Spectrometer (TIMS) in the Mass Spectrometry and Isotope 

Geochemistry laboratories at Imperial College London (MAGIC). Measured 87Sr/86Sr ratios were 

corrected for mass bias using an exponential law and assuming a 88Sr/86Sr ratio of 8.375. Repeated 

SRM987 standard measurements over the duration of three months yielded an 87Sr/86Sr ratio of 

0.710261 ± 13 (2 S.D., n=31), in agreement with the published value for SRM987 of 0.710252 ± 13 (2 

S.D., n=88; Weis et al., 2006). Strontium blanks were typically below 200pg (n=5), except for one 

batch that yielded a blank of 460pg Sr.  

Neodymium isotope ratios were analysed on a Nu Plasma HR MC-ICP-MS in the MAGIC 

laboratories. Neodymium isotope ratios were corrected for instrumental mass bias using a 

146Nd/144Nd ratio of 0.7219 and an exponential law. Measured 143Nd/144Nd ratios for all samples are 

reported after correcting for the average JNdi 143Nd/144Nd ratio of the session to the accepted value 

of 0.512115 (Tanaka et al., 2000). Blanks for the Nd procedure were typically below 10 pg (n=3) but 

always below 40 pg (n=1). Repeat measurements of the USGS BCR-2 standard over multiple runs 
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during the course of this study yielded 143Nd/144Nd ratios of 0.512637 ± 14 (2 S.D., n=43) and 87Sr/86Sr 

ratios of 0.705011 ± 13 (2 S.D., n=12), in agreement with published values of by Weis et al. (2006). 

Aliquots for trace element analysis were dried and transported to the Open University in 

Milton Keynes, and made up to a 1000-fold dilution of the original sample weight with MQ H2O, such 

that the final solutions were in a 0.45 M HNO3 matrix. Trace element analyses were conducted at the 

Open University, using an Agilent 8800 ICP-QQQ. The ICP-QQQ has a collision / reaction (ORS) cell, 

which allows for targeted removal of interference ions. Most elements reported here are measured 

using no gas (if interferences are not an issue) or He gas in the collision reaction cell, with the 

exception of the REE, which were measured in mass shift mode, using O2 in the cell. Analyses were 

calibrated against five USGS reference materials (BIR-1, W-2, DNC-1, BHVO-2, AGV-1) at the start of 

each measurement session.  An internal standard was added on line to monitor and correct for 

instrument drift. In addition, a monitor block, consisting of the reference material BCR-2, a repeated 

unknown, and a nitric solution, was run every five to seven unknowns, to assess the drift correction 

and monitor the precision and accuracy of analyses. Oxide formation (measured as CeO+ / Ce+) was 

kept low at <1.0% in no gas, or <0.6% in He gas mode, and doubly charged species (Ce++ / Ce+) at 

<1.5% and <1.0%, respectively. Detection limits of trace elements were typically 2–50ppt in solution 

for light elements and ≤2ppt for mid to heavy elements (Rb – U). Overall, precision on repeated BCR-

2 standard measurements (n=12) was usually below 5%, while accuracy checks were below 10% 

(except for Ti at 18%). 

5. Results  

5.1. 40Ar/39Ar ages of individual hornblende and biotite grains 

40Ar/39Ar ages for 1281 hornblende and 864 biotite grains are reported in Table 1 and Appendix S1 

and illustrated in Figure 3 for each geographical sector. From east to west, the sectors are: Antarctic 

Peninsula (AP sector, 60-75°W), Bellingshausen Sea (BS sector, 75-90°W), Amundsen Sea (AS sector, 
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90-125°W), Wrigley Gulf-Hobbs Coast (WH sector, 125-150°W) and Sulzberger Bay (SB sector, 150-

160°W). Our results include 178 hornblende 40Ar/39Ar ages previously reported by Roy et al. (2007).  

Antarctic Peninsula (AP, 60-75°W, core sites 1-8) 

In the AP sector we find a continuous hornblende 40Ar/39Ar age spectrum from 0 to ~320 Ma with 

three major peaks at 14 Ma, 55 Ma and ~90 Ma, and some scattered older grains of ~480-1000 Ma 

and ~1600-2000 Ma (n=222; Fig. 3a). Significantly fewer biotite grains (n=14) were analysed for 

40Ar/39Ar ages (Table 1). Three minor age clusters occur in the 23–83 Ma age interval, with three 

peak ages of ~27 Ma, ~50 Ma and ~77 Ma (Fig. 3b). Two single grains record ages of 360-380 Ma.  

Bellingshausen Sea (BS, 75-90°W, core sites 9-16) 

In the BS sector a continuous hornblende 40Ar/39Ar age spectrum spans from 0–260 Ma, but with a 

dominant cluster between ~75 and 140 Ma, a peak of ~110 Ma, and one older grain at 510 Ma 

(n=176; Fig. 3c). Biotite 40Ar/39Ar ages (n=167) yield a similar age range, predominantly from 0 to 

~280 Ma, with the majority of grain ages in the interval between 75 and 135 Ma, and with peaks at 

~99 Ma and ~108 Ma. One older grain dates back to 480 Ma (Fig. 3d). The finer sand size-fraction (63 

− 150μm) of site 13 was picked for biotite grains, and hence the 40Ar/39Ar ages for this sample could 

be influenced by ocean current transport because biotite grains of this size can be affected by 

relatively weak ocean currents with flow speeds as observed in the Bellingshausen Sea. However, 

age distribution observed at site 13 shows no pattern deviating from that of other core samples in 

the BS sector, with the majority of the ages ranging from 94-120 Ma (Table S1).  
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Figure 3: 40Ar/39Ar ages of hornblende and biotite grains from five sectors off the Pacific margin of 

West Antarctica. Histograms are produced using 10 Ma as bin intervals. Probability density plots 

(ISOPLOT4.15; Ludwig et al., 2003) are superimposed, and individual ages are shown with 
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uncertainties in the lower panel. Results include previously analysed 40Ar/39Ar ages of hornblende 

grains from Roy et al. (2007) (see Table 1). 

 

Amundsen Sea (AS, 90-125°W, core sites 17-54) 

The AS sector is the main focus of this study and a total of 756 hornblende grains and 598 biotite 

grain ages are reported for this sector. A continuous hornblende 40Ar/39Ar age spectrum from 0 to 

~380 Ma shows two noticeable peaks at ~101 Ma and ~250 Ma. A significant number of grains with 

ages ranging from 140 to ~210 Ma are found, which are notably absent from the other sectors. A 

minor age peak is observed at ~353 Ma. Though significantly smaller in number, older hornblende 

grains also appear in these sediments (n=20), with age clusters of 400-550 Ma, 640-800 Ma, 1120-

1360 Ma, 1700-1850 Ma and 2600-2800 Ma (Fig. 3e, Appendix S1). Biotite 40Ar/39Ar ages (n=598) 

spread from 0 to ~300 Ma, with a prominent peak at ~100 Ma, and secondary peaks at ~170 and 240 

Ma. Nine older grains yield ages of ~330-375 Ma, ~450 and 890 Ma (Fig. 3f). The apparent modern 

(~0 Ma) age peaks observed in both minerals in the AS sector seem suspicious as the corresponding 

grains were primarily picked from core 49 situated on the upper continental slope, and are not 

detected in other sectors (Fig. 2). Biotite grains from site 41 were picked from a smaller size-fraction 

(Table 2) and hence could potentially be influenced by ocean current transport due to fast flow 

speeds detected off the Dotson Ice Shelf (Kim et al., 2016a). However, 40Ar/39Ar ages from this 

sample do not reveal any pattern deviating from that of 40Ar/39Ar ages in nearby core samples (Table 

S1). We hence consider differential sorting of biotite and hornblende mineral grains of the same size 

fraction to be negligible in our study area. 

Wrigley Gulf-Hobbs Coast (WH, 125-150°W, core sites 55-59) 

A total of 101 hornblende ages obtained from the WH sector record well defined 40Ar/39Ar ages with 

populations around 0-20 Ma and 65-140 Ma, and age probability peaks at ~0 Ma and ~100 Ma as 
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well as three scattered ages of ~210 Ma, 300 Ma and 610 Ma (Fig. 3g). Biotite 40Ar/39Ar ages (n= 85) 

cover a similar age range from 0 to ~150 Ma, with some scattered ages of ~180 Ma, but the 

dominant age probability peak at 101 Ma is slightly older than the one defined by the hornblende 

grains. A second minor age peak is detected around ~53 Ma, which is absent in the hornblende age 

spectrum (Fig. 3h). 

Sulzberger Bay (SB, 150-160°W, cores 60-67) 

Most hornblende 40Ar/39Ar ages (n= 26) from the SB sector range from 0 to ~135 Ma, and show a 

well-defined age probability peak at ~100 Ma. Minor age peaks occur at ~48 Ma and ~5 Ma and 

three individual grains yield ages of ~170 Ma, 350 Ma and 510 Ma (Fig. 3i). No biotite grains were 

picked/analysed from this sector.  

 

5.2. Neodymium and strontium isotope composition of fine-grained detrital 

sediments 

In total, 66 and 54 samples were analysed for their detrital Nd and Sr isotopic composition 

respectively. The Nd isotope results are expressed as epsilon values (εNd), which denotes the 

deviation from a chondritic value of 0.512638 in parts per 10,000 (Jacobsen and Wasserburg, 1980). 

Neodymium and Sr isotope results from the study of Roy et al. (2007) on eight additional distal 

samples are included in the following results and subsequent discussion (Table 2). 

Overall, detrital continental margin sediments off West Antarctica have Nd isotopic 

compositions ranging from -12 to +2 and 87Sr/86Sr ratios from 0.7493 to 0.7057 (Fig. 4, Table 2). The 

values are anti-correlated as expected from global trends, and are distinct for individual sectors. The 

highest Nd isotope values and the lowest Sr isotope ratios are found in the WH sector (Nd = -0.5 to 

1.3, 87Sr/86Sr = 0.7056 to 0.7061), in the westernmost sample from the AS sector (site 54; εNd = 0.3) 

and in the easternmost samples from the AP sector (site 1 and 3-5: Nd = 0.9 to 2.2; 87Sr/86Sr 

~0.7053). The other end of the data range is defined by samples from SB, i.e. offshore from western 
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Marie Byrd Land (Fig. 2), with Nd isotopic compositions of -11.9 to -10.6 and 87Sr/86Sr = 0.7411 to 

0.7493. Detrital shelf sediments from the AS sector reveal intermediate values, but with distinctly 

different values in the eastern and western AS. In the eastern AS, lower Nd and higher radiogenic Sr 

values (Nd ~-7.3, 87Sr/86Sr ~ 0.7240) are found in a sample taken in front of Pine Island Glacier (site 

32, Table 2, Fig. 2). Along the eastern flank of the AS sector the isotopic fingerprints of the samples 

change systematically northwards across the shelf to higher Nd and lower Sr isotopic compositions 

(site 20: Nd ~-3.3, 87Sr/86Sr ~ 0.7079). A uniform signature is observed in the western AS sector, 

where shelf sediments yield Nd and Sr isotopic compositions of Nd ~-2.9 to -1.7 and 87Sr/86Sr 

~0.7082 to 0.7101 (n=17), except sample from site 39 proximal to Dotson Ice Shelf (Nd = 0.4; 

87Sr/86Sr was not measured) and site 51 on the lower continental slope (Nd ~-5.5; 87Sr/86Sr = 0.7128). 

Detrital surface sediments from the BS extend from the values recorded in the western AS and on 

the eastern AS shelf towards lower Nd and higher Sr values, along a steeper slope (Nd = -7.3 to -4.2, 

87Sr/86Sr = 0.7097 to 0.7132, n=8; Fig. 4). General anti-correlation of Nd and Sr isotopes in fine-

grained detrital sediments off West Antarctica, in addition to the extremely uniform values observed 

in the western AS from ice proximal to ice distal (ocean) locations, indicate that both isotope 

systematics are predominantly governed by provenance and not by sedimentary sorting or 

weathering. 
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Figure 4: Neodymium and strontium isotopic compositions of detrital surface sediments along the 

Pacific margin of West Antarctica. Marine sediment data are displayed as symbols according to 

geographical sectors defined in Table 1 (only samples where both Nd and Sr isotope ratios were 

measured are shown). Isotopic compositions of major bedrock outcrops on land are compiled from 

the literature (see Appendix S2) and correspond to the units displayed in Fig. 2 (Note: For simplicity 

data from high-grade metamorphic rocks are not displayed). APVG = Antarctic Peninsula Volcanic 

Group.  
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Table 2: Sr and Nd isotope compositions of the detrital fraction (<63μm) and clay mineral 

assemblages (<2μm) of surface sediments off West Antarctica 

Cor
e 

Sit
e 

Site 
locatio

n 

Se
ct
or 
a 

87R
b/86

Sr b 

87Sr/86

Sr (±2 
S.E.) 

147S
m/14

4Nd 
b 

143Nd/1

44Nd 
(±2 

S.E.) 
εN

d 

± 2 
S.D
. c 

TDM 
(M
a) d 

R
e
f.
e 

Ill
(
%
) 

S
m
e(
%) 

Kl
n(
%
) 

C
hl
(
%
) Ref.e 

1 
DF86-
48* AP   

  

0.5127
51  ± 8 

2.
2
0 

0.3
6 

 
  

     

2 
DF85-

53 AP 
       

  
     

3 

PD88-
111 

Grab3
7* AP 

   

0.5127
25  ± 9 

1.
6
9 

0.3
6 

 
  

     

4 

PD88-
111 

Grab4
1* AP 

   

0.5127
19  ± 9 

1.
5
7 

0.3
6 

 
  

     

5 
ELT05-

22 AP 
 

0.705
281  ± 

5 
0.13
66 

0.5126
85  ± 

10 

0.
9
2 

 
920 

2
,
3 

     

6 
DF85-

82 AP 
       

  
     

7 
ELT05-

20 AP   

0.708
198  ± 

7 
0.13
41 

0.5124
69  ± 

18 

-
3.
3
0 

 

130
4 

2
,
3 

     

8 
PS252

4-1 AP 
1.4
23 

0.708
926  ± 

5 
0.11
79 

0.5124
53  ± 8 

-
3.
6
1 

0.2
1 

110
9 1 

5
8 8 0 34 4 

9 BC470 BS 
1.6
28 

0.710
100  ± 

4 
0.11
79 

0.5124
05  ± 8 

-
4.
5
5 

0.2
8 

118
5 1 

     

10 
ELT42-

09 BS   
 

0.12
55 

0.5124
20  ± 9 

-
4.
2
5 

 

126
1 2 

     

11 BC361 BS 
1.7
06 

0.709
714  ± 

5 
0.11
60 

0.5123
92  ± 

16 

-
4.
8
0 

0.3
2 

118
3 1 

4
4 20 5 31 5 

12 GC362 BS 
1.9
20 

0.711
165  ± 

5 
0.11
73 

0.5123
49  ± 6 

-
5.
6

0.2
9 

126
7 1 

5
2 19 6 23 5 
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4 

13 BC364 BS 
1.8
46 

0.713
189  ± 

5 
0.11
42 

0.5122
67  ± 6 

-
7.
2
4 

0.3
0 

135
3 1 

6
6 7 2 25 5 

14 BC369 BS 
1.5
47 

0.710
320  ± 

4 
0.11
52 

0.5123
59  ± 9 

-
5.
4
4 

0.2
4 

122
4 1 

4
6 20 3 30 5 

15 BC459 BS 
1.3
99 

0.710
539  ± 

4 
0.11
36 

0.5123
21  ± 

10 

-
6.
1
8 

0.2
8 

126
2 1 

5
2 16 6 26 

6 
(GC3
72) 

16 
PS254

3-3 BS 
1.8
89 

0.712
397  ± 

5 
0.11
23 

0.5122
85  ± 7 

-
6.
8
9 

0.2
1 

130
1 1 

5
9 14 4 23 4 

17 
ELT11-

19 
AS
-E   

0.707
928  ± 

6 
0.12
71 

0.5124
70  ± 

10 

-
3.
2
8 

 

119
7 

2
,
3 

     

18 
ELT11-

18 
AS
-E   

0.709
790  ± 

5 
0.12
13 

0.5123
99  ± 5 

-
4.
6
6 

 

123
9 

2
,
3 

     

19 
ELT11-

17 
AS
-E   

0.710
616  ± 

8 
0.12
57 

0.5124
00  ± 

16 

-
4.
6
4 

 

129
9 

2
,
3 

     

20 
PS58/2

54-2 
AS
-E 

1.6
58 

0.708
704  ± 

4 
0.11
85 

0.5124
86  ± 6 

-
2.
9
6 

0.3
0 

106
4 1 

3
3 38 12 17 7 

21 
PS75/1

92-2 
AS
-E 

1.7
26 

0.710
162  ± 

5 
0.11
27 

0.5124
08  ± 8 

-
4.
4
9 

0.2
1 

112
1 1 

     

22 
PS69/2

55-3 
AS
-E 

1.5
41 

0.709
971  ± 

5 
0.11
35 

0.5124
02  ± 8 

-
4.
6
1 

0.2
4 

113
9 1 

4
1 27 14 18 7 

23 
PS69/2

51-1 
AS
-E 

2.0
41 

0.711
226  ± 

6 
0.11
23 

0.5123
96  ± 8 

-
4.
7
1 

0.2
1 

113
3 1 

4
1 25 16 18 7 

24 
DF85-
109 

AS
-E 

       
  

     

25 BC451 
AS
-E 

2.2
55 

0.711
652  ± 

5 
0.11
31 

0.5124
29  ± 

10 

-
4.
0
7 

0.2
8 

109
2 1 

4
6 23 16 14 7 
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26 BC455 
AS
-E 

1.7
03 

0.710
384  ± 

5 
0.11
17 

0.5124
15  ± 9 

-
4.
3
4 

0.2
8 

109
9 1 

4
5 24 16 15 7 

 
repeatf   

 

0.710
365  ± 

5 
 

0.5124
15  ± 7 

-
4.
3
5 

0.1
6 

 
  

     

27 BC485 
AS
-E 

2.7
89 

0.713
436  ± 

4 
0.11
41 

0.5124
25  ± 9 

-
4.
1
6 

0.2
8 

111
0 1 

4
6 19 19 15 7 

28 
DF85 
96-1 

AS
-E 

       
  

     

29 
PS69/2

99-1 
AS
-E 

1.1
93 

0.707
947  ± 

5 
0.11
18 

0.5124
70  ± 8 

-
3.
2
8 

0.2
4 

101
8 1 

4
1 26 7 25 7 

30 BC482 
AS
-E 

3.3
03 

0.715
235  ± 

4 
0.11
18 

0.5123
99  ± 9 

-
4.
6
7 

0.2
8 

112
5 1 

4
4 19 23 15 7 

31 BC476 
AS
-E 

3.9
03 

0.718
795  ± 

6 
0.11
16 

0.5123
29  ± 

10 

-
6.
0
3 

0.2
8 

122
6 1 

5
2 16 17 16 7 

32 
PS75/1

59-1 
AS
-E 

4.6
59 

0.723
959  ± 

5 
0.11
00 

0.5122
67  ± 8 

-
7.
2
4 

0.2
1 

129
9 1 

     

33 
PS75/1

68-1 
AS
-E 

3.5
57 

0.716
904  ± 

6 
0.10
96 

0.5124
06  ± 8 

-
4.
5
2 

0.2
1 

109
0 1 

5
0 13 21 16 

7 
(PS69
/292-

3) 

34 BC442 
AS
-E 

1.9
46 

0.710
417  ± 

4 
0.11
31 

0.5124
65  ± 9 

-
3.
3
7 

0.2
8 

103
9 1 

4
7 18 19 16 7 

35 BC443 
AS
-E 

1.7
12 

0.710
181  ± 

5 
0.11
35 

0.5124
54  ± 8 

-
3.
5
8 

0.2
8 

105
9 1 

4
7 20 18 16 7 

36 
PS69/2

81-3 
AS
-W 

2.0
58 

0.709
504  ± 

6 
0.11
16 

0.5125
42  ± 8 

-
1.
8
7 

0.2
8 909 1 

4
2 14 29 15 7 

37 
NBP07
-02* 

AS
-W   

  

0.5125
12  ± 8 

-
2.
4
6 

0.3
2 

 
  

     38 BC420 AS 2.0 0.710 0.11 0.5125 - 0.2 992 1 4 13 18 22 7 
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-W 84 125  ± 
5 

67 19  ± 6 2.
3
2 

9 7 

39 

NBP00
-01 

KC24* 
AS
-W   

  

0.5126
60  ± 9 

0.
4
3 

0.3
7 

 
  

     

40 BC421 
AS
-W 

2.2
05 

0.710
011  ± 

5 
0.11
24 

0.5124
99  ± 8 

-
2.
7
1 

0.2
8 981 1 

4
3 22 19 16 7 

41 BC412 
AS
-W 

2.1
09 

0.709
682  ± 

5 
0.11
48 

0.5124
96  ± 9 

-
2.
7
6 

0.2
8 

100
8 1 

4
0 21 20 19 7 

42 

NBP00
-01 

PC22* 
AS
-W   

  

0.5125
17  ± 

10 

-
2.
3
5 

0.2
9 

 
  

     

43 

NBP00
-01 

KC21*  
AS
-W   

  

0.5124
95  ± 8 

-
2.
7
9 

0.2
9 

 
  

     

44 
NBP07
-02* 

AS
-W   

  

0.5124
86  ± 8 

-
2.
9
7 

0.3
2 

 
  

     

45 
PS69/2

75-2 
AS
-W 

2.4
46 

0.710
115  ± 

5 
0.11
44 

0.5125
17  ± 8 

-
2.
3
5 

0.2
9 973 1 

4
3 20 20 16 7 

46 BC407 
AS
-W 

2.2
75 

0.709
903  ± 

4 
0.11
34 

0.5125
09  ± 7 

-
2.
5
2 

0.2
4 975 1 

4
3 18 22 18 7 

 
repeat 

 
  

0.710
041  ± 

5 
 

0.5125
04  ± 9 

-
2.
6
2 

0.2
1 

 
  

     

47 
PS69/2

83-5 
AS
-W 

2.1
80 

0.709
881  ± 

4 
0.11
33 

0.5124
92  ± 7 

-
2.
8
6 

0.2
0 

100
0 1 

4
3 20 19 18 7 

48 BC431 
AS
-W 

1.7
46 

0.708
959  ± 

4 
0.11
36 

0.5124
88  ± 8 

-
2.
9
2 

0.2
8 

100
8 1 

4
6 17 19 18 7 

49 BC433 
AS
-W 

1.8
48 

0.709
845  ± 

4 
0.11
28 

0.5125
05  ± 7 

-
2.
5
9 

0.2
8 976 1 

4
3 17 21 18 7 

50 BC492 AS 1.6 0.709 0.11 0.5125 - 0.2 954 1 
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-W 97 711  ± 
5 

4 26  ± 7 2.
1
8 

9 

51 
ELT33-

12 
AS
-W   

0.712
846  ± 

6 
0.11
88 

0.5123
58  ± 8 

-
5.
4
6 

 

127
2 

2
,
3 

     

52 
ELT33-

11 
AS
-W   

0.709
086  ± 

6 
0.11
87 

0.5125
02  ± 

10 

-
2.
6
5 

 

104
0 

2
,
3 

     

53 
PS254

5-1 
AS
-W 

1.8
09 

0.708
276  ± 

7 
0.11
44 

0.5125
53  ± 8 

-
1.
6
6 

0.2
1 918 1 

3
9 28 23 10 4 

54 

NBP00
-01 

KC17* 
W
H       

0.5126
53  ± 8 

0.
2
9 

0.3
2               

55 

NBP99
-02 

PC21* 
W
H 

   

0.5126
10  ± 7 

-
0.
5
4 

0.3
2 

 
  

     

56 

NBP99
-02 

TC23 
W
H 

1.0
12 

0.705
656  ± 

5 
0.11
56 

0.5126
67  ± 

10 

0.
5
7 

0.2
4 752 1 

3
7 27 20 17 1 

57 

NBP00
-01 

PC14 
W
H 

1.0
45 

0.705
917  ± 

4 
0.11
55 

0.5126
54  ± 9 

0.
3
2 

0.2
4 770 1 

3
7 25 20 18 1 

58 
PS75/1

33-1 
W
H 

1.0
81 

0.706
122  ± 

4 
0.11
51 

0.5127
03  ± 8 

1.
2
6 

0.3
0 693 1 

3
6 28 14 21 1 

59 
PS75/1

30-2 
W
H 

0.8
91 

0.705
889  ± 

4 
0.11
58 

0.5126
97  ± 5 

1.
1
4 

0.2
9 707 1           

60 

DF83-
III 

BC28 SB 
7.1
42 

0.741
188  ± 

4 
0.11
33 

0.5120
85  ± 8 

-
1
0.
7
9 

0.2
4 

161
6 1 

     

61 

NBP96
-01 

PC12 SB 
7.4
92 

0.743
425  ± 

4 
0.11
31 

0.5120
77  ± 9 

-
1
0.
9
5 

0.2
4 

162
3 1 

     

62 

NBP96
-01 

TC13 SB 
8.2
65 

0.747
045  ± 

5 
0.11
27 

0.5120
63  ± 8 

-
1
1.
2
2 

0.2
4 

163
9 1   

    

63 
NBP99

-02 SB   
  

0.5120
58  ± 7 

-
1

0.3
2 
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Grab2
0 

1.
3
1 

64 
DF83 
PC31 SB 

8.3
24 

0.747
928  ± 

5 
0.11
29 

0.5120
30  ± 8 

-
1
1.
8
6 

0.2
4 

169
1 1   

    

65 

DF83-
III 

BC26A SB 
8.0
10 

0.742
576  ± 

4 
0.11
19 

0.5120
96  ± 9 

-
1
0.
5
8 

0.2
4 

157
6 1   

    

66 

NBP96
-01 

JTC11 SB 
8.2
24 

0.749
275  ± 

4 
0.11
18 

0.5120
50  ± 

10 

-
1
1.
4
7 

0.2
4 

164
3 1   

    

 

repeat 

 
  

0.749
534  ± 

6 
 

0.5126
33  ± 8 

-
1
1.
5
2 

0.1
6 

  
  

    

67 

DF83-
III 

BC33 SB 
7.9
76 

0.741
931  ± 

4 
0.11
28 

0.5120
80  ± 8 

-
1
0.
8
9 

0.2
4 

161
6 1           

a) see Table 1 
b) calculated from elemental compostion of the same sample (Table 3) 
c) Standard deviation based on the reproducibility of the 143Nd/144Nd ratio of the JNdi standard 
during each run: 0.512224 ±14 (n=24), 0.512116 ±12 (n=17), 0.512144 ± 12 (n=13), 0.512157 ± 10 
(n=12), 0.512106 ± 12 (n=32), 0.512149 ± 11 (n=27) and 0.512142 ± (n=16).  
d) Nd model ages relative to present depleted mantle (DM) using a one-stage evolution model: 
147Sm/144Nd= 0.2136; 143Nd/144Nd=0.51315 
e) (1) this study; (2) Roy et al., 2007; (3) Hemming et al., 2007; (4) Hillenbrand et al., 2002; (5) 
Hillenbrand et al., 2009; (6) Hillenbrand et al., 2010; (7) Ehrmann et al., 2011 
f) Repeat values represent full procedural replicats of sample powders (i.e. from digestion, through 
ion exchange chromatography, to mass spectrometry).  

*) Samples denoted with a star were analysed at L-DEO for their Nd isotopic composition using 

similar methodologies to those described in the main text, but run on a AXIOM MC-ICP-MS (see van 

de Flierdt et al., 2008, for more details on methodology). 
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5.3. Trace element composition of fine-grained detrital sediments 

Trace element compositions, including full REE patterns, were analysed on the <63m fraction of 44 

detrital seafloor sediment samples. The data are reported in Table 3 and are illustrated in mid-ocean 

ridge basalt (MORB)-normalized spider diagrams (Fig. 5). Overall, detrital sediments show 

compositions comparable to Post-Archean Average Shale (PAAS) (McLennan, 2001). Some elements, 

however, deviate from PAAS. Zirconium (Zr) concentrations show considerable scatter (Fig. 5), while 

the elemental ratio of the two high-field strength elements Zr and yttrium (Y) are high in sediments 

from the WH sector (Zr/Y ~10.5) and low in sediments from the SB sector (Zr/Y ~4) as well as in 

sediments proximal to Pine Island and Thwaites glaciers (Zr/Y ~5). Similarly, high Sr over thorium (Th) 

ratios of 25 ‒ 30 are observed in WH, at site 29 on the AS (Sr/Th ~25) and in the AP sector (site 8, 

Sr/Th ~27), with the latter sector being mostly characterized by very low thorium (Table 3). The ratio 

of Th over scandium (Sc), which generally describes the relative contribution of basic and felsic rocks 

(Taylor and McLennan, 2001), is elevated in the samples from sites 32 and 33 proximal to Pine Island 

and Thwaites glaciers (1.5-2.0), but low in WH (~0.8-1), sites 8 to 11 from the AP and BS sectors (0.6-

0.8) and in one distal sample from site 20 in the AS sector (0.6). Europium anomalies are moderately 

negative (Eu/Eu* = 0.5-0.9) in most samples, and correlate well with Th/Sc (R2= 0.67; Fig. 6) and 

Sr/Th ratios (R2= 0.87) (Table 3). 
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Figure 5: a) Trace element compositions of fine-grained (<63μm) detrital surface sediments along 

the Pacific margin of West Antarctica, normalized to average mid-ocean ridge basalts and arranged 

in order of incompatibility (Gale et al., 2013). Individual sample results are indicated by white circles 

in the upper graphs, while the red line denotes the composition of the Post-Archean Average Shale 

(PAAS, McLennan, 2001). The grey field denotes marine sediment samples from this study. b) 

Sediments from the Wrigley Gulf-Hobbs Coast sector are now shown as diamonds connected by a 

yellow line, and sediments from Sulzberger Bay are shown as triangles connected by a brown line. 

The grey field denotes samples from the Antarctic Peninsula (AP), Bellingshausen Sea (BS) and 

Amundsen Sea (AS) sectors. The patterns for these two groups are similar to onland results obtained 

for Late Cenozoic alkali basalts (yellow line; Futa and LeMasurier, 1983; Hart et al., 1997) and 

Palaeozoic meta-sedimentary rocks (brown line; Korhonen et al., 2010), respectively.  
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6. Provenance of glacial-marine sediments 

In this section we evaluate the provenance signature of coarse and fine-grained detrital sediment 

from the seafloor in conjunction with onshore geochemical (Sr and Nd isotope values) and 

geochronological data (K-Ar and 40Ar/39Ar ages on hornblende, biotite, mica grains and whole rock 

samples, U/Pb zircon ages, and Rb-Sr whole rock ages) compiled from the literature (Table S2). 

Knowledge of the regional tectonic history of West Antarctica is a prerequisite in order to relate 

offshore 40Ar/39Ar mineral ages to bedrock sources, particularly in areas where 40Ar/39Ar cooling ages 

are scarce and comparison with other geochronological data is required. Overall, offshore 40Ar/39Ar 

ages match those reported for outcrops onland, recording largely the erosion of syn-tectonic 

Palaeozoic to Cenozoic plutons emplaced onto the former magmatic arc along the Gondwana 

margin, with distinctive thermal age peaks at ~245 Ma, ~170 Ma, ~100 Ma and 50-90 Ma. Onshore 

U-Pb ages on zircons on crystalline bedrock are sparse, but fall in the range of our offshore 40Ar/39Ar 

data, reflecting West Antarctica’s active margin settings. In addition to the thermochronological 

ages, fine-grained Sr and Nd isotope and trace element fingerprints from the <63μm sediment 

fraction record an integrated signal of the erosion of major outcropping lithologies. The observed 

fingerprint in marine sediments allows to distinguish between glaciomarine sediments supplied by 

five major source sectors on West Antarctica. The integrated signal allows furthermore to identify 

erosion of volcanic and sedimentary rocks, which are inherently difficult to detect using hornblende 

and biotite 40Ar/39Ar ages (i.e. ‘mineralogical or grain-size bias’). 

 

6.1. Antarctic Peninsula (AP) 

Provenance of ice-rafted detritus 

Outcrops of young Late Cretaceous (<90 Ma) to Cenozoic igneous rocks have been 

documented on the Antarctic Peninsula, especially along the western coasts of Graham and Palmer 
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Land and on Alexander Island (Leat et al., 1995; McCarron and Smellie, 1998; Ryan, 2005; Fig. 2, 

Appendix S2), recording the latest stage of the eastward-propagating cessation of ocean crust 

subduction under the Antarctic plate. Of particular interest are igneous rocks of ~12-14 Ma 

(particularly of hornblende-bearing mafic dykes), 20-21, 47-68 Ma and ~85 Ma, which crop out along 

the coast of Marguerite Bay on the west side of the Antarctic Peninsula, and at the northern tip of 

Alexander Island (Fig. 2 e.g. Ryan, 2007; Appendix S2), and which could explain the majority of the 

mineral grain ages observed in the shelf sediments. The extensively outcropping metasedimentary 

rocks of Carboniferous to Cretaceous age on Alexander Island are depleted in amphiboles and micas 

(Pierce et al., 2014) and hence not captured in the offshore 40Ar/39Ar age record. The signature of 

these sedimentary rocks is however observed by qualitative petrographic analysis and fine-grained 

Sr and Nd isotope fingerprints. In particular, site 8 sediments contain quarzitic clasts (quartz, 

feldspars), fine-grained dark lithic clasts (mudstone?), and lithic clasts with a fine-grained pink 

matrix. This is consistent with erosion of the meta-sedimentary formation on Alexander Island, 

which is largely composed of feldspathic sandstone, siltstone and black mudstones (Burn, 1984), as 

well as igneous rocks (lava, tuffs) similar to the Tertiary volcanics present on the island (Care, 1983). 

Provenance of fine-grained detritus 

Outcrops of Cretaceous to Cenozoic plutonic and volcanic (<97 Ma) rocks are characterised by 

radiogenic Nd and Sr isotopic compositions (εNd ~-2 to 5; 87Sr/86Sr ~0.703-0.708; Pankhurst et al., 

1988; McCarron and Smellie, 1998; Riley et al., 2001, 2003; Ryan, 2005, Fig. 4, Appendix S2), which 

are distinct from Jurassic to Cretaceous granitoids in the Antarctic Peninsula and the Amundsen Sea 

region (εNd: -8 to 0; 87Sr/86Sr ~0.703-0.715) (Fig. 4; Appendix S2). The Antarctic Peninsula Volcanic 

Group and/or nearby granitoids hence seem to be the likely source for the fine-grained detritus with 

relatively radiogenic values observed at site 1-4, most proximal to the Graham Land coast (Fig. 2;  

Table 2). Sites 7 and 8 are located near to the Alexander Island, where extensive occurrences of 

arkosic sedimentary rocks (Fig. 2, Doubleday et al., 1993) are characterized by less radiogenic Nd 
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isotope values (εNd: -8 to -3; Fig. 3; Adams et al., 2005). The agreement between onshore data and 

our new offshore data indicate a local source for the marine sediments in the AP sector. We note, 

however, that a mixture between the granitic and volcanic rocks, which crop out on Alexander 

Island, could yield a similar isotopic fingerprint. 

6.2. Bellingshausen Sea (BS) 

Provenance of ice-rafted detritus 

Bedrock exposures along the BS coast are extremely rare (Fig. 2) and limited to outcrops of 

some Cretaceous igneous rocks (Rb-Sr whole rock ages of 113 to 128 Ma; Pankhurst and Rowley, 

1991) and Miocene-Quaternary volcanic rocks (Smellie, 1999; Hathway, 2001). Aeromagnetic 

investigations detected the ‘Pacific Margin Anomaly’ in the coastal region flanking the BS, notably in 

its eastern sector (Ferraccioli et al., 2006), which has been linked to mafic and intermediate 

basement rocks 40Ar/39Ar dated at 129-141 Ma by (Maslanyi and Storey, 1990; Vaughan et al., 

1998). Hornblende and biotite 40Ar/39Ar ages, extracted from our marine sediment samples, record a 

dominant age interval of 74 to ~140 Ma with well-defined age peaks of ~110 Ma and ~99-108 Ma, 

respectively. Onland source rock candidates for such ages are mid-Cretaceous felsic plutons 

intruding metasedimentary rocks in eastern Palmer Land (Fig. 2; 40Ar/39Ar dated to 95-119 Ma; 

Vaughan et al., 2012b), and/or older terranes which have been affected by the amphibolite-grade 

thermo-metamorphic Palmer Land event at 103-107 Ma (Wendt et al., 2008; Vaughan et al., 2012a).  

We suggest that this Palmer Land thermal event potentially affected large parts of the coast around 

the Bellingshausen Sea. Supporting evidence for this idea comes from the absence of mafic intrusion 

ages (i.e. Pacific Margin Anomaly; 129-141 Ma) in the sedimentary record of the eastern BS sector. 

Furthermore, distinctively different geologies along the eastern and western coasts of the 

Bellingshausen Sea seem not to be reflected in the iceberg-rafted component of the offshore 

sediments, which show a narrow range of 40Ar/39Ar age populations in both hornblende and biotite 

grains between sites 11 and 13 indicating regional thermal resetting (Table S2; Figure 2). 
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Provenance of fine-grained detritus 

Surface sediments in the BS are characterized by lower Nd isotopic composition for a given 

87Sr/86Sr value compared to the other sectors (Nd = -7.3 to -4.2, 87Sr/86Sr = 0.7097 to 0.7132; Fig. 4). 

Volcanic rocks of the Antarctic Peninsula Volcanic Group, situated inland of the BS coast (Figs. 2, 4), 

could provide the less radiogenic Nd isotopic compositions, but are Jurassic in age (~160-190 Ma) 

and have high 87Sr/86Sr values (Riley et al., 2001). The Cenozoic alkali basalts have very high Nd and 

low Sr isotope values and thus are unlikely to explain the observed signature in the shelf sediments 

(Fig. 4). Furthermore, clay mineral data from shelf sediments in the BS sector (Table 2) make it 

unlikely that volcanic source rock from along the BS coast contribute significantly to the observed 

provenance of the glacial-marine sediments, because enhanced smectite contents (indicative of 

supply of volcanic detritus) are restricted to samples from the easternmost BS sector along the west 

coast of Alexander Island (Hillenbrand et al., 2009b). More negative Nd values, as well as felsic trace 

element patterns (high Th/Sc, Eu/Eu* and low Sr/Zr and Zr/Y), are consistent indicators of a more 

evolved source (e.g. McLennan et al., 1993), notably in the western BS sector. This observation is in 

agreement with the clay mineral composition of marine sediments along the southern coast of the 

BS (Hillenbrand et al., 2009b), which is characterised by high illite and low smectite contents (sites 

11 to 12), indicating a granitic or gneissic source (Fig. 5). Felsic bedrock in the southern hinterland of 

the BS has indeed been inferred from aeromagnetic observations, with ilmenite-rich intrusions in the 

west contrasting with magnetite-rich counterparts to the east responsible for the Pacific Margin 

Anomaly (Ferraccioli et al., 2006).  

6.3. Amundsen Sea 

Provenance of ice-rafted detritus  

Ice-rafted hornblende and biotite grains in sediments from the AS are distinct from other 

sectors on the Pacific margin of West Antarctica because of the significant presence of 40Ar/39Ar ages 
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> 140 Ma (Fig. 3e,f). Predominant hornblende age peaks are ~100-110 Ma, ~140-210 Ma, ~250 Ma 

and ~350 Ma, and ~100-110 Ma, ~170 and ~240 Ma for biotite grains (Fig. 7). Similar age populations 

have been detected in coastal outcrops of mainly calc-alkaline igneous and metaigneous granitoid 

rocks around the ASE by using a variety of dating methods (Pankhurst et al., 1993; 1998; Mukasa 

and Dalziel, 2000; Kipf et al., 2012; Riley et al., 2017; Appendix S2).  

In detail, sites proximal to the coast reveal a different provenance between the Walgreen 

Coast in the western AS, and the coast extending from Thurston Island towards Pine Island Bay in 

the eastern AS (Fig. 2). Sites 22 and 24-29 along the eastern AS coast are characterized by a large 

number of grains with ages from 140-210 Ma, while grains from sites proximal to the Walgreen 

Coast (sites 38, 40-41 and 45) lack such ages (Fig. 7). Ice-rafted debris (IRD) supplied by icebergs 

calved from of the Abbot and Cosgrove Ice Shelves (Fig. 2), as well as from Pine Island and/or 

Thwaites glaciers (sites31-32) are likely sources for the observed 40Ar/39Ar ages of 140-210 Ma. The 

unique geological signature of the Thurston Island block, with its characteristic Jurassic ages, was 

already specified by Pankhurst et al. (1993), based on biotite and hornblende K-Ar ages (~150 Ma) 

and is also present in our offshore record.  

Peak Cretaceous ages for both hornblende and biotite grains are slightly but distinctively (~10 

Ma) different between the eastern and western ASE (Fig. 7). Hornblende and biotite grains supplied 

from the Walgreen Coast (western ASE) record ages of 108-110 Ma, while erosion along the eastern 

ASE coast sheds grains with a pronounced ~100 Ma age peak (Fig. 7). This difference in mineral age 

population between the western and eastern Amundsen Sea sectors can be related to the 

diachronous eastward cessation of subduction, and therefore a progression of calc-alkaline 

magmatism from Marie Byrd Land towards Thurston Island (Mukasa and Dalziel, 2000). Finally, a 

minor ~353 Ma age peak is visible in ice-rafted hornblende grains, particularly at sites 18, 22 and 25-

27 proximal to Thurston Island, but not in biotite grains (Fig. 2, 7; Appendix S1). Matching ages can 

be identified onland from a granodioritic orthogneiss formation cropping out on the eastern side of 
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Thurston Island, which has been dated by zircon U-Pb to ~349 Ma (Riley et al., 2017). Material from 

these outcrops could either be carried by icebergs into the eastern AS sector via the Antarctic 

Coastal Current, or similar outcrops could be located below ice streams feeding the Abbot Ice Shelf, 

which eventually calves into the eastern ASE.  

Rocks cropping out along the Walgreen Coast have Cretaceous (~100-130 Ma, zircon U-Pb and 

40Ar/39Ar plateau) and Late Palaeozoic ages (~250 Ma and ~350-500 Ma, zircon U-Pb) (Pankhurst et 

al., 1998; Mukasa and Dalziel, 2000; Kipf et al., 2012). These ages are mostly found in the grains of 

the proximal offshore sediments, except for the 350-500 Ma age interval, which may be absent due 

to the limited onshore occurrence of rocks of that age and the limited amount of grains analysed in 

the marine sediments. 

 One striking observation when comparing the geological map (Fig. 2) with the marine detrital 

mineral grain ages (Fig. 3) is the notable absence of ages that can be related to outcropping Late 

Cenozoic alkali basalt volcanoes (e.g. Hudson Mountains, Mount Murphy and Mount Takahe, Fig. 2), 

with the exception of site 49 from the continental slope. Explanations for this observation could 

either involve the limited extent of such lithologies below the erosive ice drainage compared to the 

igneous batholith, or the fact that hornblende and biotite grains are not present or are too fine-

grained to be detected in the coarse (i.e. >150μm) fraction of marine samples, and hence not 

reflected in the 40Ar/39Ar age spectrum.   

Provenance of fine-grained detritus 

Similar to the 40Ar/39Ar ages of the ice-rafted grains, the Sr and Nd isotopic composition of the 

fine-grained sediments in the AS can be separated into an eastern and western sub-sector, broadly 

delimited by the extent of the Pine Island and Cosgrove-Abbot troughs in the East and the Dotson-

Getz Trough in the West, which are incised into the continental shelf (Larter et al., 2014; Figs. 2, 4). 

Sediments in the western AS are characterized by a very homogeneous Sr and Nd isotope signature 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

(Nd ~-2.9 to -1.8 and 87Sr/86Sr ~0.7082 to 0.7101), which correlates with the isotopic signature of 

Mesozoic granites and granodiorites observed in coastal outcrops (Fig. 4, 9). We note that sites 36 to 

45 are located proximal to the Dotson Ice Shelf and various parts of the Getz Ice Shelf along the 

Walgreen Coast. The glaciers feeding into these ice shelves drain distinct, separate basins, but 

nevertheless the offshore sediment samples record very similar Sr and Nd isotope fingerprints. Site 

39 marks an exception to this general pattern (Fig. 2, 9), because it is characterized by distinctively 

higher εNd values, potentially due to a much localised source. Supply of material eroded from 

Palaeozoic granites seems to be a minor contributor to the fine-grained detritus, similar to what was 

observed for the IRD fraction from sites in this area.  

In the eastern AS, sediment recovered just in front of Pine Island Glacier (site 31) shows a 

different and distinct radiogenic isotope fingerprint (εNd = -7.2; 87Sr/86Sr = 0.7240; Table 2). This 

unradiogenic signature is unlikely to be related to proximal outcropping young volcanic rocks, which 

have more radiogenic (higher) Nd and lower Sr isotope ratios (εNd ~5; 87Sr/86Sr ~0.703; Hart et al., 

1997). Seismic reflection and airborne potential field data provide evidence for a mixed bed below 

Pine Island Glacier, consisting of unconsolidated and consolidated sedimentary strata, basement 

rocks and igneous intrusives (Smith et al., 2013). Rocks similar to the Palaeozoic sedimentary 

outcrops on western Marie Byrd Land could be one candidate to contribute to the observed 

signature (Fig. 4). Petrographic studies on coarse-grained clasts (>2mm) in seafloor surface 

sediments in a nearby core (PS75/215-1), however, found a largely granitic source for this IRD 

(Lindow et al., 2016). It is unclear whether the IRD originated from below Pine Island Glacier or from 

granitic islands cropping out in Pine Island Bay. Overall, given the presence of igneous basement and 

granitic IRD in shelf sediments proximal to Pine Island Glacier, we suggest that the distinctively low 

Nd values and high 87Sr/86Sr ratios in fine-grained detrital sediments at site 32 represent a significant 

input from evolved granites, which experienced significant crustal assimilation during mantle 

extraction (Fig. 4), or sedimentary infill eroded from this source. Such granites crop out further 

inland in the Jones Mountains and in the Ellsworth-Whitmore Mountains (Fig. 2, Pankhurst et al., 
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1993; Millar and Pankhurst, 1987). This interpretation is further supported by trace metal 

compositions showing low Th/Sc and Eu/Eu* (Fig. 6), and high Th/Zr ratios (see Table 3 for values). 

Such ratios are indicative of felsic rocks such as evolved granites or granites that encountered more 

crustal assimilation (e.g. McLennan et al., 1993).  

Along the eastern flank of the AS sector, εNd values become consistently lower with increasing 

distance from inner Pine Island Bay, while 87Sr/86Sr values become higher, and eventually overlap 

with the composition of the local Mesozoic granites (Figs. 4, 9). A logical interpretation of this 

pattern is increasing input of material from the eastern coast of the ASE (between Thurston Island 

and Pine Island Glacier), where extensive Mesozoic granites are exposed (Figs. 4 and 9). 

 

 

Figure 6: Diagram of Th/Sc vs Eu/Eu* compositions of surface sediments along the Pacific margin of 

West Antarctica. Circled samples denote sediments with positive cerium anomalies (Ce/Ce*>1.1), 

indicating minor redox processes affecting the sediments or their sources. Numbers indicate core 

sites of samples, which are discussed in more detail in the main text. Abbreviations: AP – Antarctic 
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Peninsula, BS – Bellingshausen Sea, AS-E – eastern Amundsen Sea, AS-W – western Amundsen Sea, 

WH – Wrigley Gulf – Hobbs Coast, SB – Sulzberger Bay. 

6.4. Wrigley Gulf-Hobbs Coast 

Provenance of ice-rafted detritus 

The Hobbs Coast is characterized by granitoid outcrops with zircon U-Pb ages of ~115 Ma at 

Mt. Petras (Figs. 2, 8), and similar ages elsewhere along the Ruppert Coast in migmatitic, anorogenic, 

and I-type granitoids (Mukasa and Dalziel, 2000). This age is well reflected in the 40Ar/39Ar ages of 

coarse hornblende and biotite grains in marine sediments from the WH sector with a dominance of 

ages between 90 and 130 Ma, and slightly younger peak ages of ~100 Ma and ~101 Ma, respectively 

(Fig. 3g,h). Older Palaeozoic granitoids crop out along the Ruppert Coast and in the Ford Ranges. It is 

however, unlikely that such rocks are present below the drainage basin of the western Getz Ice 

Shelf, as they are rich in hornblende and biotite grains recording undisturbed K-Ar mineral ages of 

324-375 Ma (Adams, 1987), which we do not find in the age population of our grains. A secondary 

biotite 40Ar/39Ar age peak of ~53 Ma detected at site 58 is more difficult to explain, as rocks of 

suitable ages are unknown from the local geology. Previous studies on IRD from sites 58 and 59 have 

focused on apatite fission track (AFT) thermochronology (Spiegel et al., 2016) and found widespread 

AFT ages of 60 to 80 Ma. AFT thermochronology is based on the analysis of lattice damage caused by 

the spontaneous fission of radiogenic 238U. This method has a lower closure temperature of ~120°C, 

and Spiegel et al. (2016) correlated AFT ages of 60 to 80 Ma with Cretaceous granitoids, which 

makes them an unlikely source for ~53 Ma old biotite grains. Basement rocks with (post-) Miocene 

AFT cooling ages (~20 Ma) on the other hand were interpreted by Spiegel et al. (2016) to reflect an 

unknown source under the Getz Ice Shelf drainage basin. This source is not found in proximal 

outcrops, but is likely to be composed of granitic and/or diorite material given the petrographic data 

on IRD (>2mm) from the same site. These rocks could account for our observed ~53 Ma 40Ar/39Ar age 

in the biotite population. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

A small number of young hornblende ages (<10 Ma, n=9) are found in the detrital sediments, 

tracing the erosion of young alkali basalts. Erosion of these volcanic rocks is further confirmed by 

petrographic IRD analysis carried out by Spiegel et al. (2016), revealing the contribution of ~40% 

from volcanogenic clasts that can be associated with the local alkali basalts. Given the extent of 

outcropping Cenozoic volcanic rocks in the hinterland of the WH sector (Fig. 2), the relative absence 

of a significant young age peak in our data signifies that these volcanic rocks are likely to contain 

hornblende and biotite grains that are too small to be detected in coarse marine samples (i.e picked 

from >150μm fraction).  

Provenance of fine-grained detritus 

The fine-grained detritus of the WH sector (and site 54 in the western AS, Fig. 2) has high Nd 

values and low 87Sr/86Sr ratios (Fig. 4), which can be explained by the two major lithologies cropping 

out along the Hobbs and Ruppert Coasts, the Late Cenozoic alkali basalts and Cretaceous calc-

alkaline granites (Fig. 2). Mixing calculations between these two end-members suggests a ~30% 

contribution from alkali basalts and ~70% contribution from Cretaceous granites to the sediments 

(average Mesozoic granitoids vs. average Late Cenozoic alkali basalts, Appendix S2). This assessment 

is in agreement with the petrographic IRD analysis by Spiegel et al. (2016) and further supported by 

trace element compositions of our detrital sediment samples, which indicate a mixture between a 

Mesozoic granitic end-member and Cenozoic alkali basalts (Fig. 4b). In detail, high Sr/Th (~28) and 

Zr/Y ratios (~10.5; Table 3) and slightly elevated Eu/Eu* ratios relative to the other studied sectors 

(~0.8) are all consistent with a significant contribution from mafic alkali basalts to the detrital 

composition of the seafloor sediments. 
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6.5. Sulzberger Bay 

Provenance of ice-rafted debris 

During the mid-Cretaceous, rifting of Zealandia from western Marie Byrd Land led to the 

intrusion of extensive anorogenic granitoids with K-Ar ages of ~98-105 Ma (Richard et al., 1994; 

Adams et al., 1995). These rocks are predominantly exposed in the Ford Ranges and on Edward VII 

Peninsula, where they crop out alongside Palaeozoic granodiorites (i.e. Ford Granodiorite Suite) and 

Cambrian-Ordovician metasedimentary rocks (i.e. Swanson Formation) (Weaver et al., 1992; Adams 

et al., 1995, Fig. 2).  The Ford Granodiorite Suite contains coarse hornblende and biotite grains with 

zircon U-Pb and K-Ar hornblende and biotite ages of 320-370 Ma (Adams, 1987; Pankhurst et al., 

1998). Predominant hornblende 40Ar/39Ar ages of 90 to 130 Ma (peak age: ~100 Ma; n=26) in marine 

sediments in SB indicate limited erosion from the Ford Granodiorite Suite, with the exception of two 

grains with ages of 347 Ma and 510 Ma (Appendix S1). A more likely source for the IRD in the SB 

sector is hence Edward VII Peninsula (Fig. 2). This conclusion seems in contrast to aeromagnetic 

investigations of the area, which inferred a larger extent for the Ford Granodiorite Suite on Edward 

VII Peninsula (Ferraccioli et al., 2002). Overall, however, our age distribution is in agreement with 

the ages of local A-type granites, the thermal overprinting ages and the absence of hornblende 

grains in the sedimentary Swanson Formation (Adams et al., 1995, see Pierce et al. 2014, for a 

discussion on durability of hornblende grains in the sedimentary cycle), which crops out extensively 

on Edward VII Peninsula. 

Provenance of fine-grained sediments 

In contrast to the IRD signature, low Nd (εNd: -11.9 to -10.5) and high Sr isotope values 

(87Sr/86Sr: 0.7411 to 0.7493) in the fine-grained detritus in the SB sector show a strong affinity to the 

metasedimentary Swanson Formation (εNd: -13.4 to -10.5 and 87Sr/86Sr: 0.7264 to 0.7618) (Pankhurst 

et al., 1998; Korhonen et al., 2010; Fig. 3). In detail, Nd isotopic compositions are slightly higher and 

Nd model ages are slightly younger (~1600 Ma, Table 2) than documented for the Swanson 
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Formation on land (1650-1800 Ma; Appendix S2). An additional source is therefore needed to 

explain the observed signatures, which is readily found in the local A-type granites intruding the 

Swanson Formation on Edward VII Peninsula (Weaver et al., 1992). A mixture between Palaeozoic 

sediments from the Swanson Formation and Cretaceous anorogenic granitoids in the marine detrital 

sediments from the SB sector is further suggested by low Sr/Th ratios (4-5) and characteristic low Eu 

anomalies (Eu/Eu* ~ 0.6), and is consistent with coarse and fine-grained geochemical signatures in 

marine sediments from the area. 

 

 

Figure 7: Relative frequency of 40Ar/39Ar ages on hornblende and biotite grains from proximal 

locations in the Amundsen Sea Embayment (ASE). Upper panel displays results for the eastern 

ASE  (sites 22 and 24-29) and lower panel displays results for the western ASE (sites 38, 40-41 and 

45). Note the presence of a significant population of hornblende grains with ages of ~140-210 Ma 

(blue shading) and ~350 Ma (purple shading) in the eastern ASE and their absence from the western 

ASE. 
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7. Comparison of different provenance proxies 

7.1. 40Ar/39Ar ages in hornblende vs biotite grains  

Combined analyses of 40Ar/39Ar ages from hornblende and biotite grains in detrital sediments allows 

for more detailed provenance analysis due to the different closure temperatures of both minerals 

(~550°C and 300°C, respectively). In the case of East Antarctica, partial or total resetting of lower 

temperature thermochronometers has been observed in several sectors. For example, in detrital 

sediments from the Wilkes Land sector (90°E to 135°E), a characteristic ~1494 Ma peak age is found 

in hornblende grains, but is absent from the biotite grains. This observation has been linked to 

partial resetting of biotite grain ages during the Grenville orogeny (Pierce et al., 2014).  

In West Antarctica, coastal geology is dominated by Andean-style plutonism of Permian or 

younger age, resulting in large diorite, granodiorite, monzogranite and syenite intrusions, which in 

many cases are not overprinted by any major younger tectono-metamorphic events (except for the 

regional Palmer Land Event at 103-107 Ma). If marine sediment sites are proximal enough to the 

continental source areas, which carry both large hornblende and biotite grains, as is the case for 

many of the West Antarctic plutonites, and if the erosional pathway from source to sink does not 

separate the two mineral phases by differential current sorting, combined biotite-hornblende 

40Ar/39Ar data sets may be used to broadly support provenance interpretations by inferred cooling 

rates. We think that a case can be made as large parts of our data set meet these criteria. Overall, 

probability peaks of hornblende grain ages are similar to or slightly older than those of biotite grains 

around West Antarctica (Fig. 3). Both minerals record a dominant Cretaceous age peak (100-110 Ma) 

in all sectors, apart from the AP sector (Fig. 3). This age interval is particularly well defined in most of 

the sectors and peak ages between both mineral systems vary by as little as ~2 Ma in the detrital 

marine sediments (e.g. AS sector; Fig. 7). Because magmatic activity has been largely episodic (e.g. 

Pankhurst et al., 1993; Leat et al., 1995), we suggest that these ages point towards regional sources 

from the same lithological unit (i.e. batholith). Derived cooling rates for the Cretaceous source rocks 
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would be extremely fast (~>100°C per million years between 550 and 350°C). To our knowledge, 

there are no detailed investigations on the cooling rates of Cretaceous I-type granitoids from West 

Antarctica. Concordant ages between zircon U-Pb ages, and reliable 40Ar/39Ar, K-Ar and Rb-Sr data 

have nonetheless been observed for intrusive I-type granites on Palmer Land (Pankhurst and 

Rowley, 1991; Flowerdew et al., 2005; Vaughan et al., 2012b). Thermochronological investigations 

on Cretaceous A-type granites in the Ford Ranges (‘Byrd Coast Granites’; Fig. 2) have revealed 

cooling rates of >100°C/Ma, associated with granitic intrusion into the shallow crust (Richard et al., 

1994). In South America, the emplacement of large Cretaceous plutonic rocks was coeval with the 

build-up of the Cretaceous batholith on West Antarctica. The mid-Cretaceous plutonic complex in 

the Coastal Range of central Chile show similar rapid cooling of gabbro to granodiorite suites (93 to 

95 Ma based on coupled 40Ar/39Ar hornblende, biotite and plagioclase ages), and similar 

crystallization ages of the same batholith (95-97 Ma; zircon U-Pb ages; (Parada et al., 2005; 

Ferrando et al., 2014). Another comparison can be made for the eastern AS, where detrital 

hornblende grains yield well-defined ages of ~257 Ma and biotite grains record a younger age of 240 

Ma (Fig. 7). This age difference would imply an approximate cooling rate of ~15°C per million years 

for the Permian-Triassic source rocks. This result is consistent with cooling rates of similarly aged 

dioritic to granodioritic rocks from Thurston Island (~12.5°C/Ma based on K/Ar and 40Ar/39Ar on 

hornblende and biotite; Pankhurst et al., 1993) and calc-alkaline diorites of the Median Batholith in 

New Zealand (~20°C per million years, Mortimer et al., 1999), which formed the continuation of the 

Amundsen Sea province prior to the onset of rifting (Bradshaw et al., 1997; Vaughan and Storey, 

2000).  

Offshore from the Walgreen Coast, pre-Cretaceous (>140 Ma) biotite grains are relatively rare 

compared to hornblende grains (Fig. 7). This observation is explained either by the presence of 

intermediate to mafic sources which carry more hornblende than biotite (i.e. granodiorite and 

diorite; Pierce et al., 2014), or by thermal resetting of biotite ages during the Cretaceous. Permian 

diorite and granodiorite outcrops of ~243 Ma and ~283 Ma (zircon U-Pb, Mukasa and Dalziel, 2000) 
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have been identified in the Kohler Range, which is fed by ice streams flowing towards the Walgreen 

Coast, and could hence indicate a (minor) mineralogical bias towards biotite in the area.  

In several locations, a marked distinction between the two chronometers is observed in the 

offshore record. In addition to the previously mentioned exotic biotite ages of ~53 Ma in the WH 

sector, hornblende ages of ~350 Ma, which are absent in the biotite record, were found in the 

eastern AS sector (Fig. 7). Comparison with the proximal geology relate these ages to the 

emplacement of a granodioritic-orthogneiss on Thurston Island (Rb-Sr whole rock: ~309 Ma, 

Pankhurst et al., 1993; zircon U-Pb: ~349 Ma, Riley et al., 2017). These gneisses show evidence for 

realignment and recrystallization of biotite crystals, indicating that a thermal event is likely to have 

affected the cooling ages of these crystals, possibly during later intrusions of the widespread 

Permian-Triassic plutonic rocks (~240 Ma).  

7.2. Fine-grained sediment provenance derived from radiogenic isotopes and trace 

elements versus clay mineralogy 

Along the Pacific margin of West Antarctica, most of the previous provenance work has 

focussed on the analysis of mineral assemblages in the clay fraction (<2μm), which was published by 

Hillenbrand and Ehrmann (2002), Hillenbrand et al. (2003, 2009b) and Ehrmann et al. (2011). In this 

study, we expanded the existing clay mineral data set by analysing additional samples from the 

Wrigley Gulf-Hobbs Coast sector (Table 2). We here show that the combined study of clay 

mineralogy and fine-grained sediment fingerprints provides complimentary information on their 

onshore source. 

In the AP and BS sectors, high illite content in shelf sediments (45-70 %) has been found 

offshore from the eastern tip of Alexander Island, as well as in the western part of the BS sector 

(Table 2; Hillenbrand and Ehrmann 2002; Hillenbrand et al., 2003). The high abundance of illite in 

these areas was suggested to originate from granitic and gneissic sources. Assumption of a granitic-

gneissic source on Alexander Island is based on the presence of plutonic rocks in the eastern part of 
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the island (i.e. the Rouen Mountains; Care, 1983) and the dominance of quartz-mica 

schistose/gneissic pebbles believed to be derived from the Rouen Mts. in subglacial tills recovered in 

cores from the nearby shelf (Kennedy and Anderson, 1989). However, erosion of these Tertiary 

rocks would produce a more radiogenic isotopic fingerprint in the fine-grained material of site 6 than 

what is observed (εNd ~ 2 and 87Sr/86Sr ~ 0.705; McCarron and Smellie, 1998) (Fig. 4). We suggest 

that the extensively outcropping accretionary sedimentary rocks on Alexander Island (LeMay 

Formation), which was shown to have high illite content (e.g. Underwood and Pickering, 1996) and 

Nd isotope values of ~ -8 to -3 (Fig. 4), are the more likely source rocks for the fine-grained fraction. 

The trace element fingerprint (e.g. Th/Sc, Eu/Eu*) of shelf sediments in the BS reveals a mafic 

eastern sector and a felsic western sector (Fig. 6). This finding is confirmed by the clay mineral 

composition of the sediments that contain up to 66% illite and only 7% smectite in the western part 

of this sector, while in the eastern part of the sector 44% illite and 20% smectite are found 

(Hillenbrand et al, 2009b). In addition, these observations agree with geophysical surveys, which 

suggested a felsic composition of the hinterland of the western BS (i.e. Central Domain Eastern Zone; 

Ferraccioli et al., 2006). Shelf sediments further offshore record a mixed signature between these 

end-members (Hillenbrand et al, 2009b), which is consistent with our new data. For example, site 15 

(εNd = -6.2, Th/Sc = 0.93 and illite = 52%) shows detrital contribution from both end-members (Table 

2, 3). Based on the clay mineral assemblage in the BS, Hillenbrand et al. (2003) proposed sediment 

material being carried northward by wind- and tide-driven currents without significant influence of 

the westward-driven coastal current. This fits with our observations, implying a similar sediment 

transport for the fine-grained sediment (<63μm). 

In the AS sector, high kaolinite content in shelf sediments (up to 30 %) has been suggested to 

originate from pre-Oligocene sedimentary rocks beneath the Pine Island and Thwaites glaciers 

(Hillenbrand et al., 2003; Ehrmann et al., 2011), probably sourced from the Byrd Subglacial Basin 

(Fig 2). Such sedimentary rocks do not crop out in the hinterland of the AS (Fig. 2), making their 
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geochemical signature elusive. The comparison between clay mineralogy and the fine-grained 

geochemistry yields clear correlations between kaolinite content and trace elements (not shown in 

figures). For example, hafnium (Hf), zirconium (Zr), and Nd exhibit a positive correlation with 

kaolinite content (R2= 0.67, 0.62 and 0.62, respectively), while a negative correlation can be 

observed between kaolinite content and Sr/Zr ratios (R2= 0.83). In general, kaolinite is associated 

with chemical weathering of bedrock under warm and humid conditions (Biscaye, 1965), and if it is 

found in Antarctica today, it is assumed to be derived from pre-Oligocene sedimentary strata as it 

cannot form under glacial conditions (e.g. Ehrmann et al., 1992). High Field Strength Elements 

(HFSEs) such as Zr or Hf, on the other hand, tend to be immobile during chemical weathering and 

remain in the residues of weathering while lithophile elements (i.e. Sr) are preferentially leached 

away. Hence, it is tempting to suggest that correlation between kaolinite and Sr/Zr is related to the 

presence of weathered outcrops in the hinterland. However, we do not observe a relationship 

between kaolinite and 87Sr/86Sr ratios, making glacial weathering a less likely candidate, and instead 

favour a provenance change as an explanation for Sr concentrations and isotopic compositions. 

8. Geochemical signature of ice drainage basins and influence of 

marine sediment transport 

Detailed geochemical characterization of the sediment provenance offshore from individual ice 

drainage basins gives valuable information on the integrated signature of subglacial geology and 

dispersal of glacially eroded detritus onto the shelf and further into the deep sea. It also provides the 

necessary modern day understanding how to use provenance analyses for palaeo-ice sheet 

reconstructions from marine down-core records (e.g. for East Antarctica; Cook et al., 2013, 2017; 

Pierce et al., 2017). The relatively young geological history of West Antarctica means that individual 

ice drainage basins will show less pronounced geochemical differences when compared to East 

Antarctica (e.g. Pierce et al., 2011, 2014) or the North Atlantic (e.g. Hemming, 2004). For instance, 
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Pb analyses of K-feldspars grains have been shown to be a valuable tool for distinguishing erosional 

inputs from West and East Antarctic source terranes (Flowerdew et al., 2012). However, Pb isotopic 

values are remarkably uniform on West Antarctica due to the exclusively mantle-derived sources for 

the exposed crystalline bedrock (Mukasa and Dalziel, 2000; Flowerdew et al., 2012). Our multi-

proxy approach nevertheless allows us to distinguish distinct ice drainage basins within West 

Antarctica as well as sediment transport pathways. 

8.1. Coarse-grained detrital sediment signature and potential transport pathways 

The modern IRD in the Southern Ocean is supplied by melting of calved icebergs. Ice-rafting has been 

described as the main mechanism for the transport of coarse detritus from the Antarctic continent 

to the pelagic realm as ocean currents can only transport finer sediments (e.g. Diekmann and Kuhn, 

1999). The westward flowing Antarctic Coastal Current is of particular relevance, as it dominates the 

transport of icebergs in proximity to the coast (e.g. Stammerjohn et al., 2015; Kim et al., 2016a; Fig. 

8). We find a strong contrast in IRD provenance patterns between the AP and the BS sectors (Figs. 3, 

8). Relatively young ages observed in the AP sector are sourced from the west coast of the Antarctic 

Peninsula, where outcrops of magmatic rocks of Late Cretaceous to Cenozoic ages produced by the 

eastward migration of the active subduction of the (proto-) Pacific plate under West Antarctica 

during that time are widespread (Leat et al., 1995). This can be explained by the fact that most 

icebergs from the Antarctic Peninsula are deflected northwards into the ACC by cyclonic gyres on the 

shelf before reaching the BS sector (e.g. Hofmann et al, 1996; Smith et al., 1999; cf. Hillenbrand et 

al., 2003) (Fig. 8). 

In the BS sector, the 40Ar/39Ar hornblende and biotite ages are relatively uniform in proximal 

and distal sediments and record sources with a strong mid-Cretaceous thermo-metamorphic event 

related to suturing between the western/central domains with the eastern domain of the Antarctic 

Peninsula (Fig. 1). These ages are not found in the AP sector. A large cyclonic gyre in the southern 

Bellingshausen Sea deflects the coastal current along the eastern flank of Thurston Island (~95°W) 
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(Gladstone et al., 2001; Assmann et al., 2005; cf. Hillenbrand et al., 2003), injecting most of the 

icebergs into the ACC. Some westward IRD transport may also occur within the Antarctic Coastal 

Current, but this is difficult to trace due to the ubiquitous nature of mid-Cretaceous 

thermochronological ages around West Antarctica (Fig. 8, Appendix S1). 

Most of the outcrops in the AS sector are located around Thurston Island and along the 

Walgreen Coast, where ice streams are feeding into the Abbott and Cosgrove and the Dotson and 

Getz ice shelves, respectively (Fig. 2). Proximal ice-rafted grains in these two areas show similar mid-

Cretaceous and Permian-Triassic ages (~100 Ma and ~250 Ma), but are distinct from the other 

sectors by the presence of grains with Jurassic ages (140-210 Ma), which mainly occur offshore from 

the Abbott and Cosgrove ice shelves (Fig. 7, 8). Although the numbers of grains analysed in samples 

just offshore from Pine Island Glacier (n=1) and Thwaites Glacier (n=9) are low, they also include 

grains of Jurassic ages (Appendix S1). This shows that the main source for Jurassic hornblende and 

biotite grains to the AS sector (and off West Antarctica) originates from the Cosgrove and Abbott ice 

shelves and from the Pine Island and Thwaites glaciers. In addition, surface currents in the ASE are 

influenced by the Antarctic Coastal Current. This current is overall weak (~ 1.0 cm s-1) within the 

embayment, but appears strongest near the coastline (Assmann et al., 2005; Stammerjohn et al., 

2015; Kim et al., 2016a). We observe Jurassic grains at sites on the continental slope and rise 

offshore from Dotson-Getz Trough (sites 50-52). We suggest that icebergs that drift generally 

westwards within the ASE (e.g. Mazur et al., 2017) transport the Jurassic grains from the eastern ASE 

to these locations, which are all situated south of the southern boundary of the ACC (Figs. 2, 8). 

 In general, IRD in samples from the continental slope and rise in the Amundsen Sea shows a 

larger age population (~30-80 Ma) than IRD on the continental shelf (Fig. 8). This feature is 

particularly pronounced around 70°S latitude. Source areas for grains of this age range could be 

either the western AP or the Hobbs Coast (sites 58-59) (Figs. 3, 8), both of which would require 

iceberg drift in opposing directions. Support for an AP provenance comes from petrographic 
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observations on Plio-Pleistocene ice-rafted cobbles at DSDP Leg 35 Site 324 (located offshore from 

site 17) that show a provenance from Alexander Island (Tucholke et al., 1976; Veevers and Saeed, 

2013). An argument against a far-travelled signal from the AP, however, is the lack of significant 

numbers of hornblende and biotite grains of this age range in the BS, as well as the existence of the 

large gyre in the BS, which carries most of the icebergs north-east towards the ACC (e.g. Assmann et 

al., 2005) (Fig. 8). Oceanographic observations indicate that sites at around 70°S in the Amundsen 

Sea are located within the eastward flow of the ACC (Orsi et al., 1995; Stammerjohn et al., 2015). 

This suggests that the source of the ~30-80 Ma old grains at the corresponding sites lies to the west. 

Indeed, our samples from the Hobbs Coast shelf show a well-defined ~50 Ma age peak, which 

indicates this area as the potential source for these young detrital grains (Fig 3h). The corresponding 

sites are located proximal to the westernmost Getz Ice Shelf. While the ~54 Ma age is unknown from 

onshore outcrops, it could represent a hidden source under the ice (cf. Spiegel et al. 2016). At 

present, icebergs calving from the westernmost Getz Ice Shelf drift westwards with the Antarctic 

Coastal Current towards the Ross Sea and are injected into the ACC offshore from Sulzberger Bay 

(Merino et al., 2016; Tournadre et al., 2016). 
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Figure 8: Distribution of thermochronological ages in offshore sediments and terrestrial outcrops of 

West Antarctica. 40Ar/39Ar ages of ice-rafted hornblende and biotite grains are presented as pie 

charts in 20 Ma increments. Outcrop ages are displayed with different symbols depending on the 

type of mineral and the method applied (see Appendix S2). Simplified geology is shown in grey-scale 

after Fig. 2. Thick dashed black lines indicate the approximate location of the shelf break. Coloured 

dashed arrows and underlying colour field denote major ice-rafted debris transport pathways. 

Abbreviations and inlet figure are the same as for Fig. 2.  

 

8.2. Fine-grained detrital sediment signature and potential transport pathways 

In the modern Southern Ocean, coarse grained terrigenous debris is typically transported by 

icebergs, which follow wind-driven surface currents. Fine-grained sediments are also transported by 

these icebergs, but suspended particulates can additionally be transported by meltwater plumes, 

tidal, thermohaline, and geostrophic currents, as well as gravitational downslope processes such as 

turbidity currents (e.g. Aitken and Bell, 1998; Pudsey and Camerlenghi, 1998; Diekmann and Kuhn, 

1999). Similar to the sand provenance signature, the geochemical fingerprint of the studied proximal 

fine-grained glacial-marine sediments off West Antarctica matches the nearby coastal geology very 

well, excluding a significant contribution of dust, which plays a more important role for the 

deposition of fine-grained detritus in the Sub-Antarctic Pacific sector of the Southern Ocean (e.g. 

Lamy et al., 2014). The fingerprint of sediments can be traced offshore, revealing the transport 

pathway of fine grains across the continental shelves. 

 In the AP sector, similarities in the radiogenic isotope fingerprint of site 7 on the shelf and 

site 8 located on the continental rise suggest seaward transport of detrital particles originating from 

the metasedimentary rocks on Alexander Island (Table 2, Fig. 9). Such a transport pathway across 

the western Antarctic Peninsula continental shelf has been described before for fine-grained 

terrigenous detritus (Hillenbrand and Ehrmann, 2002). In the BS, proximal sites denote felsic and 
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mafic sources in both its western and eastern parts, consistent with aeromagnetic observations in 

the area (Ferraccioli et al., 2006; Bingham et al., 2002). Following the Belgica palaeo-ice stream 

Trough northwards, sediments record a mixing signature between these two areas, which has 

previously been attributed by wind- and tidal-driven currents (Hillenbrand et al., 2003, 2009). 

A good example of bathymetrically constrained dispersal of fine-grained detritus is observed 

in the AS sector. Provenance of sediments proximal to the Pine Island and Thwaites glaciers is 

distinct, pointing to a felsic source or igneous rock with a geochemical signature of enhanced crustal 

assimilation underneath these two major ice drainage basins. Progressive northward change in 

sediment provenance along the eastern AS requires that sediment with this distinct fingerprint is 

transported northwards, and diluted along the way with Palaeozoic-Mesozoic source rocks along the 

eastern flank of the ASE (Fig. 9). The fact that samples from Dotson-Getz Trough show a uniform 

fine-grained fingerprint indicates that no significant cross shelf transport of fine-grained particles 

from further east or west occurred, as this would be recognizable in the radiogenic isotope signature 

of the samples. A candidate for the observed undiluted northward sediment transport is the 

northward return flow of upwelled Circumpolar Deep Water, after interacting with the base of the 

ice shelves, as Antarctic Surface Water (Jenkins et al., 2016). Observation from autonomous 

underwater vehicles found melt-laden outflow from ice shelves in the ASE to carry suspended 

sediment, which is sourced from the sediment-laden base of the ice shelves (Jenkins et al., 2016; 

Miles et al, 2016). This sediment-laden meltwater reaches the mid-depths of the water column and 

is transported northwards along the bathymetric troughs (e.g. Kim et al., 2016b). Release of this 

suspended particulate matter occurs notably along its main transport pathway, explaining the 

consistent provenance signatures of fine-grained sediment along the cross-shelf troughs in the ASE. 
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Figure 9: Distribution of Nd isotope composition (εNd) in marine sediments and terrestrial rocks. The 

geology is based on Fig. 2. Note: Colour scheme for outcrops is based on the average Nd isotopic 

composition of the lithology (see Appendix S2 for data assimilated from the literature). Geological 

units which could not be assigned a Nd isotope fingerprint are shown in grey. Two different colours 

were assigned to the Antarctic Peninsula Volcanic Group depending on the regional geochemical 

variation of these rocks (e.g. Riley et al., 2001, see Table S2 and text). Dashed black lines delineate 

the approximate location of the shelf break. Black dashed arrows denote major fine-grained (<63um) 

transport pathways. Abbreviations and inlet figure same as for Fig. 2. 

 

8.3. The geochemical fingerprint of West Antarctic provenance regions in the 

Pacific sector of the Southern Ocean 

An integrated provenance approach allows for a characterization of subglacial sources from 

individual ice drainage basins along the Pacific margin of West Antarctica. Figure 10 presents 

provenance characteristics compiled from our new data set and previously published studies for five 

different West Antarctic sectors. An erosional source from the Antarctic Peninsula is best identified 

by a predominance of 40Ar/39Ar ages spanning 30-90 Ma in coarse-grained IRD and a very radiogenic 

fingerprint of fine-grained detrital sediments (Nd up to +0.9 and 87Sr/86Sr ratios down to 0.705). The 

only other West Antarctic area that exhibits similar characteristics is the Hobbs Coast, where most 

biotite and hornblende 40Ar/39Ar ages are, however, older (90-140 Ma) and Nd model ages are 

younger (700 to 770 Ma). Both areas are also relatively far apart from each other, which should not 

impede their respective identification in down-core studies on marine sediment cores collected 

proximal to these source regions. The Bellingshausen Sea sector shows a predominance of IRD 

40Ar/39Ar ages around ~110 Ma, which are similar to those from the Wrigley Gulf-Hobbs Coast sector 

(~100 Ma), but the fine-grained detritus in the former sector has lower Nd values and higher 

87Sr/86Sr ratios (Nd = -4.3 to -7.2; 87Sr/86Sr = 0.710-0.713), as well as significantly older Nd model ages 
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(1180-1350 Ma). The oldest protolith ages in West Antarctica are indicated by Nd model ages of 

1570 to 1700 Ma in Sulzberger Bay, which also stands out by the unradiogenic isotope fingerprint of 

fine-grained detrital sediments (Nd <-10.6; 87Sr/86Sr > 0.741). 

Finally, a more detailed picture starts emerging for the Amundsen Sea sector, the locus of 

major glacial ice loss in Antarctica today. While both the eastern and western AS sub-sectors are 

characterized by hornblende and biotite ages of ~110 Ma and 240-260 Ma, ages of 140 to 210 Ma 

are more prevalent in the eastern ASE. Furthermore, source rocks to the eastern ASE seem to extend 

to older Nd model ages (up to 1300 Ma, Nd = -7.2) than in the western ASE (900-1000 Ma, Nd = -1.7 

to -2.9). Further studies are required to reveal whether this observation points to a distinct bedrock 

source under Pine Island Glacier, a result with major implications for tracing past WAIS retreat and 

collapse. 
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Figure 10: Summary figure of geochemical and clay mineralogical provenance characteristics of 

different sectors along the Pacific margin of West Antarctica as derived from analyses of detrital 

marine sediments. Clay mineral assemblages are taken from Hillenbrand and Ehrmann (2002), 

Hillenbrand et al. (2003, 2009b) and Ehrmann et al. (2011), and major terrestrial rock sources are 

compiled from the literature (see text for further details). 

9. Conclusions 

We here report for the first time a detailed geochemical approach to unraveling different 

provenance sectors along the Pacific margin of West Antarctica. By investigating the fingerprints of 
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fine-grained terrigenous detritus and coarse-grained ice-rafted debris in ice-sheet proximal to distal 

marine sediments of Late Holocene age, we draw the following conclusions: 

(1) Thermochronological 40Ar/39Ar dating on individual mineral grains highlights the Phanerozoic 

history of West Antarctica. Hornblende and biotite ages can be readily associated with 

extensively outcropping granites and granodiorites and allow us to distinguish the following 

sectors: Antarctic Peninsula (~52 and ~74 Ma), Bellingshausen Sea, Wrigley Gulf-Hobbs Coast 

and Sulzberger Bay sectors (~100-110 Ma) and Amundsen Sea sector (~100-110 Ma and 

~140 to 360 Ma). 40Ar/39Ar dating of hornblende and biotite grains is less suitable for 

detecting Late Cenozoic alkali basalts and metasedimentary units around West Antarctica 

(i.e. mineralogical or grain-size bias). 

(2) Strontium (Sr) and neodymium (Nd) isotopic compositions in fine-grained detrital sediments 

match the coastal geology, and observed geochemical variability can be readily related to 

genetic and lithological differences in source rocks. Data range from radiogenic values 

around the (young) Antarctic Peninsula (Nd = -3.6 to +0.9; 87Sr/86Sr = 0.705-0.709) to less 

radiogenic values around the Sulzberger Bay, where mantle extraction ages point to a much 

older protolith (up to 1700 Ma). An exciting finding is a potentially distinct geological source 

(i.e. Cretaceous granites that experienced extensive crustal assimilation) beneath Pine Island 

Glacier, which was identified in the radiogenic isotope composition of fine-grained 

sediments near its calving front. While major Palaeozoic to Mesozoic geological units in 

West Antarctica are identified in the provenance of the marine sediments, the fine fraction 

analyses prove particularly useful in detecting Late Cenozoic alkali basalts and 

metasedimentary rocks, as well as distinguishing A-type granites and granites with 

pronounced crustal assimilation signatures. 

(3) Despite an overall small variation of trace element compositions in marine detrital 

sediments off West Antarctica, they nevertheless complement isotopic provenance analyses 

and are broadly indicative of mafic and felsic source rocks. Significant variability within 
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individual ice drainage basins may prove useful for provenance studies on the local to 

regional scale, as indicated by contrasting hinterland geology between the eastern and 

western Bellingshausen Sea, the eastern and western Amundsen Sea embayment, Wrigley 

Gulf-Hobbs Coast and Sulzberger Bay. 

(4) Combined provenance studies on different size fractions of detrital sediments enable 

monitoring of modern sediment transport pathways. For example, the occurrence of ~140-

210 Ma old ice-rafted grains in the western Amundsen Sea sector, which originate from the 

eastern coast of the Amundsen Sea Embayment, highlights the modern pathway of wind-

driven iceberg trajectories within the area. On the other hand, fine-grained sediments can 

additionally be transported by currents, as exemplified by an evolving radiogenic isotope 

signature from Pine Island Bay towards the shelf break. 

Our study highlights the importance of integrated studies for identifying the geochemical 

fingerprints of individual ice drainage basins around West Antarctica. Such modern-day studies 

do not only provide the basis for any attempts to reconstruct ice drainage patterns and ice sheet 

extent in West Antarctica during the past, but also allow valuable insights into the geology under 

the ice. 
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