25 research outputs found

    Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model

    Get PDF
    The objective of the present study was to investigate whether treatment of articular cartilage with hyaluronidase and collagenase enhances histological and mechanical integration of a cartilage graft into a defect. Discs of 3 mm diameter were taken from 8-mm diameter bovine cartilage explants. Both discs and annulus were either treated for 24 hours with 0.1% hyaluronidase followed by 24 hours with 10 U/ml collagenase or left untreated (controls). Discs and annulus were reassembled and implanted subcutaneously in nude mice for 5 weeks. Integration of disc with surrounding cartilage was assessed histologically and tested biomechanically by performing a push-out test. After 5 weeks a significant increase in viable cell counts was seen in wound edges of the enzyme-treated group as compared with controls. Furthermore, matrix integration (expressed as a percentage of the total interface length that was connected; mean ± standard error) was 83 ± 15% in the treated samples versus 44 ± 40% in the untreated controls. In the enzyme-treated group only, picro-Sirius Red staining revealed collagen crossing the interface perpendicular to the wound surface. Immunohistochemical analyses demonstrated that the interface tissue contained cartilage-specific collagen type II. Collagen type I was found only in a small region of fibrous tissue at the level of the superficial layer, and collagen type III was completely absent in both groups. A significant difference in interfacial strength was found using the push-out test: 1.32 ± 0.15 MPa in the enzyme-treated group versus 0.84 ± 0.14 MPa in the untreated controls. The study shows that enzyme treatment of cartilage wounds increases histological integration and improves biomechanical bonding strength. Enzymatic treatment may represent a promising addition to current techniques for articular cartilage repair

    Proteoglycan production is required in initial stages of new cartilage matrix formation but inhibits integrative cartilage repair

    Get PDF
    The optimal stimulus to repair or regenerate cartilage is not known. We therefore modulated collagen deposition, collagen crosslinking and GAG deposition simultaneously during cartilage matrix production and integrative repair, creating more insight into their role in cartilage repair processes. Insulin-like growth factor 1 (IGF-1; increases proteoglycan and collagen synthesis), beta-aminopropionitrile (BAPN; a reversible inhibitor of collagen crosslinking) and para-nitrophenyl-beta-D-xyloside (PNPX; interferes with proteoglycan production) were used. Bovine articular chondrocytes were cultured in alginate beads for 3 weeks with or without IGF-1, BAPN or PNPX alone and in all possible combinations, followed by 3 weeks in control medium. DNA content, GAG and collagen deposition and collagen crosslinks were determined. Cartilage constructs were cultured under the same conditions and histologically analysed for integration of two opposing cartilage matrices. In alginate cultures, inhibition of collagen crosslinking with BAPN, in combination with promotion of matrix synthesis using IGF1, was most beneficial for matrix deposition. Addition of PNPX was always detrimental for matrix deposition. For integration of opposing cartilage constructs, the combination of BAPN, IGF1 and temporary prevention of proteoglycan formation with PNPX was most beneficial. When a new matrix is produced, proteoglycans are important to retain collagen in the matrix. When two already formed cartilage matrices have to integrate, a temporary absence of proteoglycans and temporary inhibition of collagen crosslinking might be more beneficial in combination with stimulation of collagen production, e.g. by IGF1. Therefore, the choice of soluble factors to promote cartilage regeneration depends on the type of therapy that will be used

    Experimental study on synthetic and biological mesh implantation in a contaminated environment

    No full text
    Background: Implantation of meshes in a contaminated environment can be complicated by mesh infection and adhesion formation. Methods: The caecal ligation and puncture model was used to induce peritonitis in 144 rats. Seven commercially available meshes were implanted intraperitoneally: six non-absorbable meshes, of which three had an absorbable coating, and one biological mesh. Mesh infection, intra-abdominal abscess formation, adhesion formation, incorporation and shrinkage were evaluated after 28 and 90 days. Histological examination with haematoxylin and eosin and picrosirius red staining was performed. Results: No mesh infections occurred in Sepramesh (R), Omyramesh (R) and Strattice (R). One mesh infection occurred in Parietene (R) and Parietene Composite (R). Significantly more mesh infections were found in C-Qur (R) (15 of 16; P <= 0.006) and Dualmesh (R) (7 of 15; P <= 0.035). Sepramesh (R) showed a significant increase in adhesion coverage from 12.5 per cent at 28 days to 60.0 per cent at 90 days (P = 0.010). At 90 days there was no significant difference between median adhesion coverage Conclusion: Parietene Composite (R) and Omyramesh (R) performed well in a contaminated environment. Strattice (R) had little adhesion formation and no mesh infection, but poor incorporation. Some synthetic meshes can be as resistant to infection as biological meshes. Copyright (c) 2012 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd

    Induction of cartilage integration by a chondrocyte/collagen-scaffold implant

    No full text
    The integration of implanted cartilage is a major challenge for the success of tissue engineering protocols. We hypothesize that in order for effective cartilage integration to take place, matrix-free chondrocytes must be induced to migrate between the two tissue surfaces. A chondrocyte/collagen-scaffold implant system was developed as a method of delivering dividing cells at the interface between two cartilage surfaces. Chondrocytes were isolated from bovine nasal septum and seeded onto both surfaces of a collagen membrane to create the chondrocyte/collagen-scaffold implant. A model of two cartilage discs and the chondrocyte/collagen-scaffold sandwiched in between was used to effect integration in vitro. The resulting tissue was analysed histologically and biomechanically. The cartilage–implant–cartilage sandwich appeared macroscopically as one continuous piece of tissue at the end of 40 day cultures. Histological analysis showed tissue continuum across the cartilage–scaffold interface. The integration was dependent on both cells and scaffold. Fluorescent labeling of implanted chondrocytes demonstrated that these cells invade the surrounding mature tissue and drive a remodelling of the extracellular matrix. Using cell-free scaffolds we also demonstrated that some chondrocytes migrated from the natural cartilage into the collagen scaffold. Quantification of integration levels using a histomorphometric repair index showed that the chondrocyte/collagen-scaffold implant achieved the highest repair index compared to controls, reflected functionally through increased tensile strength. In conclusion, cartilage integration can be achieved using a chondrocyte/collagen-scaffold implant that permits controlled delivery of chondrocytes to both host and graft mature cartilage tissues. This approach has the potential to be used therapeutically for implantation of engineered tissue
    corecore