17 research outputs found

    Ant Queen Egg-Marking Signals: Matching Deceptive Laboratory Simplicity with Natural Complexity

    Get PDF
    BACKGROUND: Experiments under controlled laboratory conditions can produce decisive evidence for testing biological hypotheses, provided they are representative of the more complex natural conditions. However, whether this requirement is fulfilled is seldom tested explicitly. Here we provide a lab/field comparison to investigate the identity of an egg-marking signal of ant queens. Our study was based on ant workers resolving conflict over male production by destroying each other's eggs, but leaving queen eggs unharmed. For this, the workers need a proximate cue to discriminate between the two egg types. Earlier correlative evidence indicated that, in the ant Pachycondyla inversa, the hydrocarbon 3,11-dimethylheptacosane (3,11-diMeC(27)) is more abundant on the surface of queen-laid eggs. METHODOLOGY: We first tested the hypothesis that 3,11-diMeC(27) functions as a queen egg-marking pheromone using laboratory-maintained colonies. We treated worker-laid eggs with synthetic 3,11-diMeC(27) and found that they were significantly more accepted than sham-treated worker-laid eggs. However, we repeated the experiment with freshly collected field colonies and observed no effect of treating worker-laid eggs with 3,11-diMeC(27), showing that this compound by itself is not the natural queen egg-marking pheromone. We subsequently investigated the overall differences of entire chemical profiles of eggs, and found that queen-laid eggs in field colonies are more distinct from worker-laid eggs than in lab colonies, have more variation in profiles, and have an excess of longer-chain hydrocarbons. CONCLUSIONS: Our results suggest that queen egg-marking signals are significantly affected by transfer to the laboratory, and that this change is possibly connected to reduced queen fertility as predicted by honest signaling theory. This change is reflected in the worker egg policing response under field and laboratory conditions

    Data from: Queen signalling in social wasps

    No full text
    Social Hymenoptera are characterized by a reproductive division of labour, whereby queens perform most of the reproduction and workers help to raise her offspring. A long-lasting debate is whether queens maintain this reproductive dominance by manipulating their daughter workers into remaining sterile (queen control), or if instead queens honestly signal their fertility and workers reproduce according to their own evolutionary incentives (queen signalling). Here we test these competing hypotheses using data from Vespine wasps. We show that in natural colonies of the Saxon wasp, Dolichovespula saxonica, queens emit reliable chemical cues of their true fertility and that these putative queen signals decrease as the colony develops and worker reproduction increases. Moreover, these putative pheromones of D. saxonica show significant conservation with those of Vespula vulgaris and other Vespinae, thereby arguing against fast evolution of signals as a result of a queen-worker arms race ensuing from queen control. Lastly, levels of worker reproduction in these species correspond well with their average colony kin structures, as predicted by the queen signalling hypothesis but not the queen control hypothesis. Altogether, this correlative yet comprehensive analysis provides compelling evidence that honest signalling explains levels of reproductive division of labour in social wasps

    Ant Queen Egg-Marking Signals: Matching Deceptive Laboratory Simplicity with Natural Complexity

    No full text
    Background: Experiments under controlled laboratory conditions can produce decisive evidence for testing biological hypotheses, provided they are representative of the more complex natural conditions. However, whether this requirement is fulfilled is seldom tested explicitly. Here we provide a lab/field comparison to investigate the identity of an egg-marking signal of ant queens. Our study was based on ant workers resolving conflict over male production by destroying each other's eggs, but leaving queen eggs unharmed. For this, the workers need a proximate cue to discriminate between the two egg types. Earlier correlative evidence indicated that, in the ant Pachycondyla inversa, the hydrocarbon 3,11-dimethylheptacosane ( 3,11-diMeC(27)) is more abundant on the surface of queen-laid eggs. Methodology: We first tested the hypothesis that 3,11-diMeC(27) functions as a queen egg-marking pheromone using laboratory-maintained colonies. We treated worker-laid eggs with synthetic 3,11-diMeC(27) and found that they were significantly more accepted than sham-treated worker-laid eggs. However, we repeated the experiment with freshly collected field colonies and observed no effect of treating worker-laid eggs with 3,11-diMeC(27), showing that this compound by itself is not the natural queen egg-marking pheromone. We subsequently investigated the overall differences of entire chemical profiles of eggs, and found that queen-laid eggs in field colonies are more distinct from worker-laid eggs than in lab colonies, have more variation in profiles, and have an excess of longer-chain hydrocarbons. Conclusions: Our results suggest that queen egg-marking signals are significantly affected by transfer to the laboratory, and that this change is possibly connected to reduced queen fertility as predicted by honest signaling theory. This change is reflected in the worker egg policing response under field and laboratory conditions.status: publishe

    Rapid Decision-Making with Side-Specific Perceptual Discrimination in Ants

    No full text
    Background: Timely decision making is crucial for survival and reproduction. Organisms often face a speed-accuracy trade-off, as fully informed, accurate decisions require time-consuming gathering and treatment of information. Optimal strategies for decision-making should therefore vary depending on the context. In mammals, there is mounting evidence that multiple systems of perceptual discrimination based on different neural circuits emphasize either fast responses or accurate treatment of stimuli depending on the context. Methodology/Principal Findings: We used the ant Camponotus aethiops to test the prediction that fast information processing achieved through direct neural pathways should be favored in situations where quick reactions are adaptive. Social insects discriminate readily between harmless group-members and dangerous strangers using easily accessible cuticular hydrocarbons as nestmate recognition cues. We show that i) tethered ants display rapid aggressive reactions upon presentation of non-nestmate odor (120 to 160 ms); ii) ants' aggressiveness towards non-nestmates can be specifically reduced by exposure to non-nestmate odor only, showing that social interactions are not required to alter responses towards non-nestmates; iii) decision-making by ants does not require information transfer between brain hemispheres, but relies on side-specific decision rules. Conclusions/Significance: Our results strongly suggest that first-order olfactory processing centers (up to the antennal lobes) are likely to play a key role in ant nestmate recognition. We hypothesize that the coarse level of discrimination achieved in the antennal lobes early in odor processing provides enough information to determine appropriate behavioral responses towards non-nestmates. This asks for a reappraisal of the mechanisms underlying social recognition in insects.status: publishe

    Are you my mother? Kin recognition in the ant Formica fusca

    No full text
    In social insects, workers trade personal reproduction for indirect fitness returns from helping their mother rear collateral kin. Colony membership is generally used as a proxy for kin discrimination, but the question remains whether recognition allows workers to discriminate between kin and nonkin regardless of colony affiliation. We investigated whether workers of the ant Formica fusca can identify their mother when fostered with their mother, their sisters, a hetero-colonial queen or hetero-colonial workers. We found that workers always displayed less aggression towards both their mother and their foster queen, as compared to an unfamiliar hetero-colonial queen. In support of this finding, workers maintain their colony hydrocarbon profile regardless of foster regime, yet show modifications when exposed to different environments. This indicates that recognition entails environmental and genetic components, which allow both discrimination of kin in the absence of prior contact and learning of recognition cues based on group membership.status: publishe
    corecore