70 research outputs found

    The WHIQII Survey: Metallicities and Spectroscopic Properties of Luminous Compact Blue Galaxies

    Get PDF
    As part of the WIYN High Image Quality Indiana Irvine (WHIQII) survey, we present 123 spectra of emission-line galaxies, selected on intermediate redshift (.4<z<.8) galaxies with blue colors that appear physically compact. The sample includes 15 true Luminous Compact Blue Galaxies (LCBGs) and an additional 27 slightly less extreme emission-line systems. These galaxies represent a highly evolving class that may play an important role in the decline of star formation since z~1, but their exact nature and evolutionary pathways remain a mystery. Here, we use emission lines to determine metallicities and ionization parameters, constraining their intrinsic properties and state of star formation. Some LCBG metallicities are consistent with a "bursting dwarf" scenario, while a substantial fraction of others are not, further confirming that LCBGs are a highly heterogeneous population but are broadly consistent with the intermediate redshift field. In agreement with previous studies, we observe overall evolution in the luminosity-metallicity relation at intermediate redshift. Our sample, and particularly the LCBGs, occupy a region in the empirical R23-O32 plane that differs from luminous local galaxies and is more consistent with dwarf Irregulars at the present epoch, suggesting that cosmic "downsizing" is observable in even the most fundamental parameters that describe star formation. These properties for our sample are also generally consistent with lying between local galaxies and those at high redshift, as expected by this scenario. Surprisingly, our sample exhibits no detectable correlation between compactness and metallicity, strongly suggesting that at these epochs of rapid star formation, the morphology of compact star-forming galaxies is largely transient.Comment: ApJ accepted, 17 pages, 20 figures, 2 tables (complete tables in published version

    Possible Local Spiral Counterparts to Compact Blue Galaxies at Intermediate Redshift

    Get PDF
    We identify nearby disk galaxies with optical structural parameters similar to those of intermediate-redshift compact blue galaxies. By comparing HI and optical emission-line widths, we show that the optical widths substantially underestimate the true kinematic widths of the local galaxies. By analogy, optical emission-line widths may underrepresent the masses of intermediate-z compact objects. For the nearby galaxies, the compact blue morphology is the result of tidally-triggered central star formation: we argue that interactions and minor mergers may cause apparently compact morphology at higher redshift.Comment: 5 pages, uses emulateapj5 and psfig. To appear in ApJ

    A Search for Low Surface Brightness Structure Around Compact Narrow Emission Line Galaxies

    Full text link
    As the most extreme members of the rapidly evolving faint blue galaxy population at intermediate redshift, the compact narrow emission line galaxies (CNELGs) are intrinsically luminous (-22 < M_B < -18) with narrow emission linewidths (30 < \sigma < 125 km/s). Their nature is heavily debated: they may be low-mass starbursting galaxies that will fade to present-day dwarf galaxies or bursts of star formation temporarily dominating the flux of more massive galaxies, possibly related to in situ bulge formation or the formation of cores of galaxies. We present deep, high-quality (~0.6 - 0.8 arcsec) images with CFHT of 27 CNELGs. One galaxy shows clear evidence for a tidal tail; the others are not unambiguously embedded in galactic disks. Approximately 55% of the CNELGS have sizes consistent with local dwarfs of small-to-intermediate sizes, while 45% have sizes consistent with large dwarfs or disks galaxies. At least 4 CNELGs cannot harbor substantial underlying disk material; they are low-luminosity galaxies at the present epoch (M_B > -18). Conversely, 15 are not blue enough to fade to low-luminosity dwarfs (M_B > -15.2). The majority of the CNELGs are consistent with progenitors of intermediate-luminosity dwarfs and low-luminosity spiral galaxies with small disks. CNELGs are a heterogeneous progenitor population with significant fractions (up to 44%) capable of fading into today's faint dwarfs (M_B > -15.2), while 15 to 85% may only experience an apparently extremely compact CNELG phase at intermediate redshift but remain more luminous galaxies at the present epoch.Comment: 16 pages, 14 figures, emulateapj, published in Ap

    Lopsidedness in dwarf irregular galaxies

    Get PDF
    We quantify the amplitude of the lopsidedness, the azimuthal angular asymmetry index, and the concentration of star forming regions, as represented by the distribution of the Hα\alpha emission, in a sample of 78 late-type irregular galaxies. We bin the observed galaxies in two groups representing blue compact galaxies (BCDs) and low surface brightness dwarf galaxies (LSBs). The light distribution is analysed with a novel algorithm, which allows detection of details in the light distribution pattern. We find that while the asymmetry of the underlying continuum light, representing the older stellar generations, is relatively small, the Hα\alpha emission is very asymmetric and is correlated in position angle with the continuum light. We test a model of random star formation over the extent of a galaxy by simulating HII regions in artificial dwarf galaxies. The implication is that random star formation over the full extent of a galaxy may be generated in LSB dwarf-irregular galaxies but not in BCD galaxies.Comment: 42 pages, LaTex. Accepted by: MNRAS, 13 Mar 200

    Empirical ugri-UBVRc Transformations for Galaxies

    Full text link
    We present empirical color transformations between Sloan Digital Sky Survey ugri and Johnson-Cousins UBVRc photometry for nearby galaxies (D < 11 Mpc). We use the Local Volume Legacy (LVL) galaxy sample where there are 90 galaxies with overlapping observational coverage for these two filter sets. The LVL galaxy sample consists of normal, non-starbursting galaxies. We also examine how well the LVL galaxy colors are described by previous transformations derived from standard calibration stars and model-based galaxy templates. We find significant galaxy color scatter around most of the previous transformation relationships. In addition, the previous transformations show systematic offsets between transformed and observed galaxy colors which are visible in observed color-color trends. The LVL-based galaxygalaxy transformations show no systematic color offsets and reproduce the observed color-color galaxy trends.Comment: Accepted for publication in MNRAS (9 pages, 6 figures, 4 tables
    corecore