69 research outputs found

    An important step towards completing the rheumatoid arthritis cycle

    Get PDF
    In the previous issue of Arthritis Research & Therapy data are presented showing that circulating immune complexes containing citrullinated fibrin(ogen) are present in anti-citrullinated protein antibody-positive rheumatoid arthritis patients, and that such immune complexes co-localize with complement factor C3 in the rheumatoid synovium. These results corroborate the idea that citrullination is intimately involved in the pathophysiology of rheumatoid arthritis and complete our model (the rheumatoid arthritis cycle) for the development and chronic nature of this disease

    Citrullination, a possible functional link between susceptibility genes and rheumatoid arthritis

    Get PDF
    Antibodies directed to citrullinated proteins (anti-cyclic citrullinated peptide) are highly specific for rheumatoid arthritis (RA). Recent data suggest that the antibodies may be involved in the disease process of RA and that several RA-associated genetic factors might be functionally linked to RA via modulation of the production of anti-cyclic citrullinated peptide antibodies or citrullinated antigens

    Characterization of Poly(A)-Protein Complexes Isolated from Free and Membrane-Bound Polyribosomes of Ehrlich Ascites Tumor Cells

    Get PDF
    Proteins present in messenger ribonucleoprotein particles were labeled with [35S]-methionine in Ehrlich ascites tumor cells in which synthesis of new ribosomes was inhibited. Poly(A)-protein complexes were isolated from free and membrane-bound polyribosomes by sucrose gradient centrifugation and affinity chromatography on oligo(dT)-cellulose. Both classes of Poly(A)-protein particles contain a poly(A) chain of about 70 adenyl residues and a protein with a molecular weight of 76000 attached to it

    Rheumatoid arthritis specific anti-Sa antibodies target citrullinated vimentin

    Get PDF
    Antibodies directed to the Sa antigen are highly specific for rheumatoid arthritis (RA) and can be detected in approximately 40% of RA sera. The antigen, a doublet of protein bands of about 50 kDa, is present in placenta and in RA synovial tissue. Although it has been stated that the Sa antigen is citrullinated vimentin, experimental proof for this claim has never been published. In this study, we investigated the precise nature of the antigen. Peptide sequences that were obtained from highly purified Sa antigen were unique to vimentin. Recombinant vimentin, however, was not recognized by anti-Sa reference sera. In vivo, vimentin is subjected to various post-translational modifications, including citrullination. Since antibodies to citrullinated proteins are known to be highly specific for RA, we investigated whether Sa is citrullinated and found that Sa indeed is citrullinated vimentin. Anti-Sa antibodies thus belong to the family of anticitrullinated protein/peptide antibodies. The presence of the Sa antigen in RA synovial tissue, and the recent observation that vimentin is citrullinated in dying human macrophages, make citrullinated vimentin an interesting candidate autoantigen in RA and may provide new insights into the potential role of citrullinated synovial antigens and the antibodies directed to them in the pathophysiology of RA

    A combination of autoantibodies to cyclic citrullinated peptide (CCP) and HLA-DRB1 locus antigens is strongly associated with future onset of rheumatoid arthritis

    Get PDF
    Antibodies against cyclic citrullinated peptide (CCP) and rheumatoid factors (RFs) have been demonstrated to predate the onset of rheumatoid arthritis (RA) by years. A nested case–control study was performed within the Northern Sweden Health and Disease study cohort to analyse the presence of shared epitope (SE) genes, defined as HLA-DRB1*0404 or DRB1*0401, and of anti-CCP antibodies and RFs in individuals who subsequently developed RA. Patients with RA were identified from among blood donors whose samples had been collected years before the onset of symptoms. Controls matched for age, sex, and date of sampling were selected randomly from the same cohort. The SE genes were identified by polymerase chain reaction sequence-specific primers. Anti-CCP2 antibodies and RFs were determined using enzyme immunoassays. Fifty-nine individuals with RA were identified as blood donors, with a median antedating time of 2.0 years (interquartile range 0.9–3.9 years) before presenting with symptoms of RA. The sensitivity for SE as a diagnostic indicator for RA was 60% and the specificity was 64%. The corresponding figures for anti-CCP antibodies were 37% and 98%, and for RFs, 17–42% and 94%, respectively. In a logistic regression analysis, SE (odds ratio [OR] = 2.35), anti-CCP antibodies (OR = 15.9), and IgA-RF (OR = 6.8) significantly predicted RA. In a combination model analysis, anti-CCP antibodies combined with SE had the highest OR (66.8, 95% confidence interval 8.3–539.4) in predicting RA, compared with anti-CCP antibodies without SE (OR = 25.01, 95% confidence interval 2.8–222.2) or SE without anti-CCP antibodies (OR = 1.9, 95% confidence interval 0.9–4.2). This study showed that the presence of anti-CCP antibodies together with SE gene carriage is associated with a very high relative risk for future development of RA

    Caspase-mediated cleavage of the exosome subunit PM/Scl-75 during apoptosis

    Get PDF
    Recent studies have implicated the dying cell as a potential reservoir of modified autoantigens that might initiate and drive systemic autoimmunity in susceptible hosts. A number of subunits of the exosome, a complex of 3'→5' exoribonucleases that functions in a variety of cellular processes, are recognized by the so-called anti-PM/Scl autoantibodies, found predominantly in patients suffering from an overlap syndrome of myositis and scleroderma. Here we show that one of these subunits, PM/Scl-75, is cleaved during apoptosis. PM/Scl-75 cleavage is inhibited by several different caspase inhibitors. The analysis of PM/Scl-75 cleavage by recombinant caspase proteins shows that PM/Scl-75 is efficiently cleaved by caspase-1, to a smaller extent by caspase-8, and relatively inefficiently by caspase-3 and caspase-7. Cleavage of the PM/Scl-75 protein occurs in the C-terminal part of the protein at Asp369 (IILD(369)↓G), and at least a fraction of the resulting N-terminal fragments of PM/Scl-75 remains associated with the exosome. Finally, the implications of PM/Scl-75 cleavage for exosome function and the generation of anti-PM/Scl-75 autoantibodies are discussed
    • 

    corecore