24 research outputs found

    A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase

    Get PDF
    The neutrophil enzyme myeloperoxidase (MPO) is a major enzyme made by neutrophils to generate antimicrobial and immunomodulatory compounds, notably hypochlorous acid (HOCl), amplifying their capacity for destroying pathogens and regulating inflammation. Despite its roles in innate immunity, the importance of MPO in preventing infection is unclear, as individuals with MPO deficiency are asymptomatic with the exception of an increased risk of candidiasis. Dysregulation of MPO activity is also linked with inflammatory conditions such as atherosclerosis, emphasising a need to understand the roles of the enzyme in greater detail. Consequently, new tools for investigating granular dynamics in vivo can provide useful insights into how MPO localises within neutrophils, aiding understanding of its role in preventing and exacerbating disease. The zebrafish is a powerful model for investigating the immune system in vivo, as it is genetically tractable, and optically transparent. To visualise MPO activity within zebrafish neutrophils, we created a genetic construct that expresses human MPO as a fusion protein with a C-terminal fluorescent tag, driven by the neutrophil-specific promoter lyz. After introducing the construct into the zebrafish genome by Tol2 transgenesis, we established the Tg(lyz:Hsa.MPO-mEmerald,cmlc2:EGFP)sh496 line, and confirmed transgene expression in zebrafish neutrophils. We observed localisation of MPO-mEmerald within a subcellular location resembling neutrophil granules, mirroring MPO in human neutrophils. In Spotless (mpxNL144) larvae - which express a non-functional zebrafish myeloperoxidase - the MPO-mEmerald transgene does not disrupt neutrophil migration to sites of infection or inflammation, suggesting that it is a suitable line for the study of neutrophil granule function. We present a novel transgenic line that can be used to investigate neutrophil granule dynamics in vivo without disrupting neutrophil behaviour, with potential applications in studying processing and maturation of MPO during development

    Impact of glycan linkage to staphylococcus aureus wall teichoic acid on langerin recognition and langerhans cell activation

    Get PDF
    Staphylococcus aureus is the leading cause of skin and soft tissue infections. It remains incompletely understood how skin-resident immune cells respond to invading S. aureus and contribute to an effective immune response. Langerhans cells (LCs), the only professional antigen-presenting cell type in the epidermis, sense S. aureus through their pattern-recognition receptor langerin, triggering a proinflammatory response. Langerin recognizes the β-1,4-linked N-acetylglucosamine (β1,4-GlcNAc) but not α-1,4-linked GlcNAc (α1,4-GlcNAc) modifications, which are added by dedicated glycosyltransferases TarS and TarM, respectively, on the cell wall glycopolymer wall teichoic acid (WTA). Recently, an alternative WTA glycosyltransferase, TarP, was identified, which also modifies WTA with β-GlcNAc but at the C-3 position (β1,3-GlcNAc) of the WTA ribitol phosphate (RboP) subunit. Here, we aimed to unravel the impact of β-GlcNAc linkage position for langerin binding and LC activation. Using genetically modified S. aureus strains, we observed that langerin similarly recognized bacteria that produce either TarS- or TarP-modified WTA, yet tarP-expressing S. aureus induced increased cytokine production and maturation of in vitro-generated LCs compared to tarS-expressing S. aureus. Chemically synthesized WTA molecules, representative of the different S. aureus WTA glycosylation patterns, were used to identify langerin-WTA binding requirements. We established that β-GlcNAc is sufficient to confer langerin binding, thereby presenting synthetic WTA molecules as a novel glycobiology tool for structure-binding studies and for elucidating S. aureus molecular pathogenesis. Overall, our data suggest that LCs are able to sense all β-GlcNAc-WTA producing S. aureus strains, likely performing an important role as first responders upon S. aureus skin invasion.Bio-organic Synthesi

    Pathogens under stress.

    No full text

    Coccoid forms of Helicobacter pylori are the morphologic manifestation of cell death

    No full text
    Helicobacter pylori can transform from its normal helical bacillary morphology to a coccoid morphology. Since this coccoid form cannot be cultured in vitro, it has been speculated that it is a dormant form potentially involved in the transmission of H. pylori and in a patient's relapse after antibiotic therapy. In this study we determined the effects of aging, temperature, aerobiosis, starvation, and antibiotics on the morphologic conversion rate and culturability of H. pylori. Aerobiosis and the addition of a bactericidal antibiotic to the culture medium resulted in the highest conversion rate. During the conversion to coccoid forms, the cultures always lost culturability at the stage where 50% of the organisms were still in bacillary form; this result indicated that culturability and coccoid morphology are two separate but related entities. Independent of the conditions used to induce the conversion into coccoids, the morphological conversion was accompanied by several marked antigenic and ultrastructural changes. Also, both the total amounts and the integrity of RNA and DNA were significantly reduced in coccoid forms. With the potential-sensitive probe diOC(5)-3, a clear loss of membrane potential in coccoid forms was observed. Inhibition of protein or RNA synthesis by the addition of bacteriostatic antibiotics did not prevent the conversion to coccoid forms but resulted in an increased conversion rate. Hence, we conclude that conversion of H. pylori from the bacillary to the coccoid form is a passive process that does not require protein synthesis. Our data suggest that the coccoid form of H. pylori is the morphologic manifestation of bacterial cell death

    Pseudomonas syringae evades host Immunity by degrading flagellin monomers with alkaline protease AprA

    No full text
    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant athogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defenserelated genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from beingrecognized by its cognate immune receptor

    Staphylococcal complement inhibitor: structure and active sites

    No full text
    The pathogenic bacterium Staphylococcus aureus counteracts the host immune defense by excretion of the 85 residue staphylococcal complement inhibitor (SCIN). SCIN inhibits the central complement convertases; thereby, it reduces phagocytosis following opsonization and efficiently blocks all downstream effector functions. In this study, we present the crystal structure of SCIN at 1.8 Ă… resolution and the identification of its active site. Functional characterization of structure based chimeric proteins, consisting of SCIN and the structurally but nonfunctional homologue open reading frame-D, indicate an 18-residue segment (Leu-31-Gly-48) crucial for SCIN activity. In all complement activation pathways, chimeras lacking these SCIN residues completely fail to inhibit production of the potent mediator of inflammation C5a. Inhibition of alternative pathway-mediated opsonization (C3b deposition) and formation of the lytic membrane attack complex (C5b-9 deposition) are strongly reduced for these chimeras as well. For inhibition of the classical/lectin pathway-mediated C3b and C5b-9 deposition, the same residues are critical although additional sites are involved. These chimeras also display reduced capacity to stabilize the C3 convertases of both the alternative and the classical/lectin pathway indicating the stabilizing effect is pivotal for the complement inhibitory activity of SCIN. Because SCIN specifically and efficiently inhibits complement, it has a high potential in anti-inflammatory therapy. Our data are a first step toward the development of a second generation molecule suitable for such therapeutic complement intervention

    Bright fluorescent Streptococcus pneumoniae for live cell imaging of host-pathogen interactions

    No full text
    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people, but at the same time one of the major causes of infectious diseases such as pneumonia, meningitis and sepsis. The shift from commensal to pathogen and its interaction with host cells is poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent and the GFP-reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells compared to encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live cell imaging of pneumococcal infection and help understand the mechanisms of pneumococcal pathogenesis
    corecore