7 research outputs found

    A new ab initio ground-state dipole moment surface for the water molecule

    Get PDF
    A valence-only (V) dipole moment surface (DMS) has been computed for water at the internally contracted multireference configuration interaction level using the extended atom-centered correlation-consistent Gaussian basis set aug-cc-pV6Z. Small corrections to these dipole values, resulting from core correlation (C) and relativistic (R) effects, have also been computed and added to the V surface. The resulting DMS surface is hence called CVR. Interestingly, the C and R corrections cancel out each other almost completely over the whole grid of points investigated. The ground-state CVR dipole of H(2) (16)O is 1.8676 D. This value compares well with the best ab initio one determined in this study, 1.8539+/-0.0013 D, which in turn agrees well with the measured ground-state dipole moment of water, 1.8546(6) D. Line intensities computed with the help of the CVR DMS shows that the present DMS is highly similar to though slightly more accurate than the best previous DMS of water determined by Schwenke and Partridge [J. Chem. Phys. 113, 16 (2000)]. The influence of the precision of the rovibrational wave functions computed using different potential energy surfaces (PESs) has been investigated and proved to be small, due mostly to the small discrepancies between the best ab initio and empirical PESs of water. Several different measures to test the DMS of water are advanced. The seemingly most sensitive measure is the comparison between the ab initio line intensities and those measured by ultralong pathlength methods which are sensitive to very weak transitions

    The DIRAC code for relativistic molecular calculations

    Get PDF
    DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree?Fock, Kohn?Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.Fil: Saue, Trond. Université Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bast, Radovan. Uit The Arctic University Of Norway; NoruegaFil: Gomes, André Severo Pereira. University Of Lille.; Francia. Centre National de la Recherche Scientifique; FranciaFil: Jensen, Hans Jorgen Aa.. University of Southern Denmark; DinamarcaFil: Visscher, Lucas. Vrije Universiteit Amsterdam; Países BajosFil: Aucar, Ignacio Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Modelado e Innovación Tecnológica. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas Naturales y Agrimensura. Instituto de Modelado e Innovación Tecnológica; Argentina. Universidad Nacional del Nordeste. Facultad de Ciencias Exactas y Naturales y Agrimensura. Departamento de Física; ArgentinaFil: Di Remigio, Roberto. Uit The Arctic University of Norway; NoruegaFil: Dyall, Kenneth G.. Dirac Solutions; Estados UnidosFil: Eliav, Ephraim. Universitat Tel Aviv.; IsraelFil: Fasshauer, Elke. Aarhus University. Department of Bioscience; DinamarcaFil: Fleig, Timo. Université Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Halbert, Loïc. Centre National de la Recherche Scientifique; Francia. University Of Lille.; FranciaFil: Hedegård, Erik Donovan. Lund University; SueciaFil: Helmich-Paris, Benjamin. Max-planck-institut Für Kohlenforschung; AlemaniaFil: Ilias, Miroslav. Matej Bel University; EslovaquiaFil: Jacob, Christoph R.. Technische Universität Braunschweig; AlemaniaFil: Knecht, Stefan. Eth Zürich, Laboratorium Für Physikalische Chemie; SuizaFil: Laerdahl, Jon K.. Oslo University Hospital; NoruegaFil: Vidal, Marta L.. Department Of Chemistry; DinamarcaFil: Nayak, Malaya K.. Bhabha Atomic Research Centre; IndiaFil: Olejniczak, Malgorzata. University Of Warsaw; PoloniaFil: Olsen, Jógvan Magnus Haugaard. Uit The Arctic University Of Norway; NoruegaFil: Pernpointner, Markus. Kybeidos Gmbh; AlemaniaFil: Senjean, Bruno. Universiteit Leiden; Países BajosFil: Shee, Avijit. Department Of Chemistry; Estados UnidosFil: Sunaga, Ayaki. Tokyo Metropolitan University; JapónFil: van Stralen, Joost N. P.. Vrije Universiteit Amsterdam; Países Bajo

    Nuclear electric quadrupole moment of gold

    Get PDF
    The nuclear quadrupole moment for Au197 has been determined on the base of the state-of-art relativistic molecular calculations. The experimental shifts in the nuclear coupling constants in the series of molecules AuF, XeAuF, KrAuF, ArAuF, (OC)AuF, and AuH have been combined with highly accurate determinations of the electric field gradient (EFG) at the gold nucleus, obtained by molecular relativistic Dirac-Coulomb-Gaunt Hartree-Fock calculations. The electronic correlation contribution to the EFG is included with the CCSD(T) and CCSD-T approaches, also in the four-component framework, using a finite-difference method. In order to estimate the accuracy of their approach the authors have thoroughly investigated the convergence of the results with respect to the basis set employed and the size of the correlated orbital space. The effect of the full Breit electron-electron interaction on the nuclear quadrupole moment of gold has also been considered explicitly for the AuF molecule. They obtain for Au197 a nuclear quadrupole moment of 510±15 mb, which deviates by about 7% from the currently accepted muonic value. © 2007 American Institute of Physics

    5th International Symposium on Focused Ultrasound

    No full text
    corecore