246 research outputs found

    Book Review: It\u27s Not News, It\u27s Fark

    Get PDF

    On measuring the Tully-Fisher relation at z>1z > 1

    Full text link
    The evolution of the line width - luminosity relation for spiral galaxies, the Tully-Fisher relation, strongly constrains galaxy formation and evolution models. At this moment, the kinematics of z>1 spiral galaxies can only be measured using rest frame optical emission lines associated with star formation, such as Halpha and [OIII]5007/4959 and [OII]3727. This method has intrinsic difficulties and uncertainties. Moreover, observations of these lines are challenging for present day telescopes and techniques. Here, we present an overview of the intrinsic and observational challenges and some ways way to circumvent them. We illustrate our results with the HST/NICMOS grism sample data of z ~ 1.5 starburst galaxies. The number of galaxies we can use in the final Tully-Fisher analysis is only three. We find a ~2 mag offset from the local rest frame B and R band Tully-Fisher relation for this sample. This offset is partially explained by sample selection effects and sample specifics. Uncertainties in inclination and extinction and the effects of star formation on the luminosity can be accounted for. The largest remaining uncertainty is the line width / rotation curve velocity measurement. We show that high resolution, excellent seeing integral field spectroscopy will improve the situation. However, we note that no flat rotation curves have been observed for galaxies with z>1. This could be due to the described instrumental and observational limitations, but it might also mean that galaxies at z>1 have not reached the organised motions of the present day.Comment: 13 pages, 7 figures, A&A accepte

    Semi-analytic modelling of the europium production by neutron star mergers in the halo of the Milky Way

    Get PDF
    Neutron star mergers (NSM) are likely to be the main production sites for the rapid (r-) neutron capture process elements. We study the r-process enrichment of the stellar halo of the Milky Way through NSM, by tracing the typical r-process element Eu in the Munich-Groningen semi-analytic galaxy formation model, applied to three high resolution Aquarius dark matter simulations. In particular, we investigate the effect of the kick velocities that neutron star binaries receive upon their formation, in the building block galaxies (BBs) that partly formed the stellar halo by merging with our Galaxy. When this kick is large enough to overcome the escape velocity of the BB, the NSM takes place outside the BB with the consequence that there is no r-process enrichment. We find that a standard distribution of NS kick velocities decreases [Eu/Mg] abundances of halo stars by ∌0.5\sim 0.5~dex compared to models where NS do not receive a kick. With low NS kick velocities, our simulations match observed [Eu/Mg] abundances of halo stars reasonably well, for stars with metallicities [Mg/H]≄−1.5\geq -1.5. Only in Aquarius halo B-2 also the lower metallicity stars have [Eu/Mg] values similar to observations. We conclude that our assumption of instantaneous mixing is most likely inaccurate for modelling the r-process enrichment of the Galactic halo, or an additional production site for r-process elements is necessary to explain the presence of low-metallicity halo stars with high Eu abundances.Comment: 15 pages, 9 figures, accepted for publication in MNRA

    Dynamics of high redshift disk galaxies

    Get PDF
    This thesis discusses the dynamical properties of high redshift infrared selected and morphologically large disk selected galaxies at redshifts between 0.7 and 2.4 and their Tully-Fisher relations. Most observations were done using the near infrared integral field spectrograph SINFONI of the Very Large Telescope (VLT).UBL - phd migration 201

    Building blocks of the Milky Way's accreted spheroid

    Get PDF
    In the Λ\LambdaCDM model of structure formation, a stellar spheroid grows by the assembly of smaller galaxies, the so-called building blocks. Combining the Munich-Groningen semi-analytical model of galaxy formation with the high resolution Aquarius simulations of dark matter haloes, we study the assembly history of the stellar spheroids of six Milky Way-mass galaxies, focussing on building block properties such as mass, age and metallicity. These properties are compared to those of the surviving satellites in the same models. We find that the building blocks have higher star formation rates on average, and this is especially the case for the more massive objects. At high redshift these dominate in star formation over the satellites, whose star formation timescales are longer on average. These differences ought to result in a larger α\alpha-element enhancement from Type II supernovae in the building blocks (compared to the satellites) by the time Type Ia supernovae would start to enrich them in iron, explaining the observational trends. Interestingly, there are some variations in the star formation timescales of the building blocks amongst the simulated haloes, indicating that [α\alpha/Fe] abundances in spheroids of other galaxies might differ from those in our own Milky Way.Comment: 14 pages, 11 figures, accepted for publication in MNRA

    Ultradeep Near-Infrared ISAAC Observations of the HDF-S: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts

    Get PDF
    We present deep near-infrared (NIR) Js, H, and Ks-band ISAAC imaging of the WFPC2 field of the HDF-S. The 2.5'x 2.5' high Galactic latitude field was observed with the VLT under the best seeing conditions with integration times amounting to 33.6 hours in Js, 32.3 hours in H, and 35.6 hours in Ks. We reach total AB magnitudes for point sources of 26.8, 26.2, and 26.2 respectively (3 sigma), which make it the deepest ground-based NIR observations to date, and the deepest Ks-band data in any field. The effective seeing of the coadded images is ~0.45" in Js, ~0.48" in H, and ~0.46" in Ks. Using published WFPC2 optical data, we constructed a Ks-limited multicolor catalog containing 833 sources down to Ks,tot ~< 26 (AB), of which 624 have seven-band optical-to-NIR photometry. These data allow us to select normal galaxies from their rest-frame optical properties to high redshift (z ~< 4). The observations, data reduction and properties of the final images are discussed, and we address the detection and photometry procedures that were used in making the catalog. In addition, we present deep number counts, color distributions and photometric redshifts of the HDF-S galaxies. We find that our faint Ks-band number counts are flatter than published counts in other deep fields, which might reflect cosmic variations or different analysis techniques. Compared to the HDF-N, we find many galaxies with very red V-H colors at photometric redshifts 1.95 < z < 3.5. These galaxies are bright in Ks with infrared colors redder than Js-Ks > 2.3 (in Johnson magnitudes). Because they are extremely faint in the observed optical, they would be missed by ultraviolet-optical selection techniques, such as the U-dropout method.Comment: LaTeX, 24 pages, 15 figures, 3 tables. Accepted for publication in the Astronomical Journal. The paper with full resolution images and figures is available at http://www.strw.leidenuniv.nl/~fires/papers/2002Labbe.ps.gz . The reduced data and catalogs can be found at http://www.strw.leidenuniv.nl/~fires/data/hdfs

    The Rest-Frame Optical Luminosity Density, Color, and Stellar Mass Density of the Universe from z=0 to z=3

    Get PDF
    We present the evolution of the rest-frame optical luminosity density, of the integrated rest-frame optical color, and of the stellar mass density for a sample of Ks-band selected galaxies in the HDF-S. We derived the luminosity density in the rest-frame U, B, and V-bands and found that the luminosity density increases by a factor of 1.9+-0.4, 2.9+-0.6, and 4.9+-1.0 in the V, B, and U rest-frame bands respectively between a redshift of 0.1 and 3.2. We derived the luminosity weighted mean cosmic (U-B)_rest and (B-V)_rest colors as a function of redshift. The colors bluen almost monotonically with increasing redshift; at z=0.1, the (U-B)_rest and (B-V)_rest colors are 0.16 and 0.75 respectively, while at z=2.8 they are -0.39 and 0.29 respectively. We derived the luminosity weighted mean M/LV using the correlation between (U-V)_rest and log_{10} M/LV which exists for a range in smooth SFHs and moderate extinctions. We have shown that the mean of individual M/LV estimates can overpredict the true value by ~70% while our method overpredicts the true values by only ~35%. We find that the universe at z~3 had ~10 times lower stellar mass density than it does today in galaxies with LV>1.4 \times 10^{10} h_{70}^-2 Lsol. 50% of the stellar mass of the universe was formed by $z~1-1.5. The rate of increase in the stellar mass density with decreasing redshift is similar to but above that for independent estimates from the HDF-N, but is slightly less than that predicted by the integral of the SFR(z) curve.Comment: 19 pages, 12 figures, Accepted for Publication in the Dec. 20, 2003 edition of the Astrophysical Journal. Minor changes made to match the accepted version including short discussions on the effects of clustering and on possible systematic effects resulting from photometric redshift error

    On measuring the Tully-Fisher relation at z > 1. A case study using strong Hα emitting galaxies at z > 1.5

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    A K-band Selected Photometric Redshift Catalog in the HDF-S: Sampling the Rest-Frame V-Band to z=3

    Full text link
    We present the first results from the Faint Infra-Red Extragalactic Survey (FIRES) of the Hubble Deep Field South. Using a combination of deep near infrared data obtained with ISAAC at the VLT with the WFPC2 HST data, we construct a K-band selected sample of 136 galaxies with K(AB)<=23.5. We derive zphot's using a newly developed technique which models the observed spectral energy distribution with a linear combination of empirical galaxy templates. Testing our zphot technique against spectroscopic redshifts in the HDF-N yields dz/(1+z)~0.07 for z<6. We show that we can derive realistic error estimates in zphot by combining the systematic uncertainties derived from the HDF-N with errors in zphot which depend on the observed flux errors. The redshift histogram of galaxies in the HDF-S shows distinct structure with a sharp peak at z~0.5 and a broad enhancement at z~1-1.4. We find that 12% of our galaxies with K(vega)=2. While this is higher than the fraction predicted in Omega_M=1 hierarchical models of galaxy formation we find that published predictions using pure luminosity evolution models produce too many bright galaxies at redshifts greater than unity. Finally, we use our broad wavelength coverage to measure the rest-frame UBV luminosities Lrest for z<=3. There is a paucity of galaxies brighter than Lrest_V>=1.4e10 h^{-2}Lsun at z~1.5-2, however, at z>2 we find very luminous galaxies with Lrest_V>=5e10 h^{-2}Lsun (for Omega_M=0.3,Lambda=0.7, H_o=100 h km s^{-1}Mpc^{-1}). Local B-band luminosity functions predict 0.1 galaxies in the redshift range 2<=z<=3.5 and with Lrest_B>= 5e10 h^{-2}Lsun,B but we find 9. The discrepancy can be explained if L*_B increases by a factor of 2.4-3.2 with respect to locally determined values (abridged).Comment: 46 pages, 15 figures, 3 Tables, Accepted for publication in Astronomical Journal, paper and high resolution figures available at http://www.strw.leidenuniv.nl/~fires/, minor changes to comply with referee's comment

    Mapping the Galactic Halo with blue horizontal branch stars from the 2dF quasar redshift survey

    Full text link
    We use 666 blue horizontal branch (BHB) stars from the 2Qz redshift survey to map the Galactic halo in four dimensions (position, distance and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index ~-2.5 in two different directions separated by 150 degrees on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase towards large radii while the stellar velocity distribution is non Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.Comment: Accepted for publication in the Astrophysical Journal Requires emulateapj to proces
    • 

    corecore