4,272 research outputs found
Secure Sparse Gradient Aggregation in Distributed Architectures
Federated Learning allows multiple parties to train a model collaboratively while keeping data locally. Two main concerns when using Federated Learning are communication costs and privacy. A technique proposed to significantly reduce communication costs and increase privacy is Partial Weight Sharing (PWS). However, this method is insecure due to the possibility to reconstruct the original data from the partial gradients, called inversion attacks. In this paper, we propose a novel method to successfully combine these PWS and Secure Multi-Party Computation, a method for increasing privacy. This is done by making clients share the same part of their gradient, and adding noise to those entries, which are canceled on aggregation. We show that this method does not decrease the accuracy compared to existing methods while preserving privacy
Designs of magnetic atom-trap lattices for quantum simulation experiments
We have designed and realized magnetic trapping geometries for ultracold
atoms based on permanent magnetic films. Magnetic chip based experiments give a
high level of control over trap barriers and geometric boundaries in a compact
experimental setup. These structures can be used to study quantum spin physics
in a wide range of energies and length scales. By introducing defects into a
triangular lattice, kagome and hexagonal lattice structures can be created.
Rectangular lattices and (quasi-)one-dimensional structures such as ladders and
diamond chain trapping potentials have also been created. Quantum spin models
can be studied in all these geometries with Rydberg atoms, which allow for
controlled interactions over several micrometers. We also present some
nonperiodic geometries where the length scales of the traps are varied over a
wide range. These tapered structures offer another way to transport large
numbers of atoms adiabatically into subwavelength traps and back.Comment: 9 pages, 10 figure
Recommended from our members
A Nonlinear Dynamical Systems Theory Perspective on Dual-ProcessingAccounts of Decision-Making under Uncertainty
Dual-processing accounts of reasoning havegained renewed attention in the past decade,particularly in the fields of social judgment,learning, and decision-making under uncertainty.Although the various accounts differ, thecommon thread is the distinction between twoqualitatively different types of reasoning:explicit/implicit, rational/affective, fast/slow, etc.Consequently, much research has focused oncharacterizing the two different processes. Lessextensive are the attempts to find mediators thatinfluence which process is used. In this paper, weargue that the missing perspective on these dual-processing theories is rooted in dynamicalsystems theory. By shifting the perspective to thedynamic interaction and transitions betweendifferent types of reasoning, we provide atheoretical framework for dual-processing withan emphasis on phase transitions. As a specialcase, we focus on dual-processing in decision-making and judgment under uncertainty forwhich we will propose suggestions for futureexperimental evaluation
Transient but not genetic loss of miR-451 attenuates the development of pulmonary arterial hypertension
<b>Rationale:</b> MicroRNAs are small non-coding RNAs involved in the regulation of gene expression and have recently been implicated in the development of pulmonary arterial hypertension (PAH). Previous work established that miR-451 is up-regulated in rodent models of PAH.<p></p>
<b>Objectives:</b> The role of miR-451 in the pulmonary circulation is unknown. We therefore sought to assess the involvement of miR-451 in the development of pulmonary arterial hypertension.<p></p>
<b>Methods:</b> Silencing of miR-451 was performed in vivo using miR-451 knockout mice and an antimiR targeting mature miR-451 in rats. Coupled with exposure to hypoxia, indices of pulmonary arterial hypertension were assessed. The effect of modulating miR-451 on human pulmonary artery smooth muscle cell proliferation and migration was analysed.<p></p>
<b>Measurements and Main Results:</b> We observed a reduction in systolic right ventricular pressure in hypoxic rats pre-treated with antimiR-451 compared to hypoxia alone (47.7 ± 1.36mmHg and 56.0 ± 2.03mmHg respectively, p<0.01). In miR-451 knockout mice following exposure to chronic hypoxia, no significant differences were observed compared to wild type hypoxic mice. In vitro analysis demonstrated that over-expression of miR-451 in human pulmonary artery smooth muscle cells promoted migration under serum-free conditions. No effect on cellular proliferation was observed.<p></p>
<b>Conclusions:</b> Transient inhibition of miR-451 attenuated the development of pulmonary arterial hypertension in hypoxia exposed rats. Genetic deletion of miR-451 had no beneficial effect on indices of pulmonary arterial hypertension, potentially due to pathway redundancy compensating for the loss of miR-451.<p></p>
Stratigraphy and palaeoceanography of a topography-controlled contourite drift in the Pen Duick area, southern Gulf of Cádiz
The northern part of the Gulf of Cádiz has and still is receiving a lot of attention from the scientific community due to (amongst others) the recent IODP Expedition 339. In contrast, its southern part, or the Moroccan margin has received far less attention, although mud volcanoes, diapiric ridges and cold-water corals are present in this region. The El Arraiche mud volcano field is characterized by a compressive regime creating several ridges and assisting the migration of hydrocarbon fluids towards the seabed surface. This study presents seismic and multibeam evidence for the existence of a contourite drift at water depths between 550 and 650 meters along the southwestern flank of the Pen Duick Escarpment and Gemini Mud Volcano, within the El Arraiche Mud Volcano field. From the onset of the Quaternary, when the escarpment started to lift and the local mud volcanism initiated, contouritic deposition was initiated as well at the foot of both topographic obstacles. Initially, fairly low-velocity bottom currents gave rise to sheeted drift deposits, affected by the uplift of the escarpment or mud extrusion. From the Middle Pleistocene onwards, separated mounded drift deposits were formed due to intensified bottom currents. An Antarctic Intermediate Water origin is inferred as driving mechanism for the drift development, although glacial conditions are not yet well constrained. The influence of Mediterranean Outflow Water (MOW) cannot be substantiated here. Moreover, the changes recorded within this contourite drift differ from the MOW-dominated contourite depositional system in the northern Gulf of Cádiz, as drift deposits only occur as early as the base of the Quaternary (compared to the Early Pliocene for the north) and mounded drift deposits only occur from the Middle Pleistocene onwards (compared to the Early Pleistocene). Cold-water coral mounds have been observed within and on top of the sedimentary sequence at the foot of the Pen Duick Escarpment. This implies that environmental conditions in which cold-water corals thrive were not necessarily restricted to the top of the Pen Duick Escarpment
Measuring very negative water potentials with polymer tensiometers: principles, performance and applications
In recent years, a polymer tensiometer (POT) was developed and tested to directly measure matric potentials in dry soils. By extending the measurement range to wilting point (a 20-fold increase compared to conventional, water-filled tensiometers), a myriad of previously unapproachable research questions are now open to experimental exploration. Furthermore, the instrument may well allow the development of more water-efficient irrigation strategies by recording water potential rather than soil water content. The principle of the sensor is to fill it with a polymer solution instead of water, thereby building up osmotic pressure inside the sensor. A high-quality ceramic allows the exchange of water with the soil while retaining the polymer. The ceramic has pores sufficiently small to remain saturated even under very negative matric potentials. Installing the sensor in an unsaturated soil causes the high pressure of the polymer solution to drop as the water potentials in the soil and in the POT equilibrate. As long as the pressure inside the polymer chamber remains sufficiently large to prevent cavitation, the sensor will function properly. If the osmotic potential in the polymer chamber can produce a pressure of approximately 2.0 MPa when the sensor is placed in water, proper readings down to wilting point are secured. Various tests in disturbed soil, including an experiment with root water uptake, demonstrate the operation and performance of the new polymer tensiometer and illustrate how processes such as root water uptake can be studied in more detail than before. The paper discusses the available data and explores the long term perspectives offered by the instrument
- …