242 research outputs found

    A new approach to determine the accuracy of morphology–elasticity relationships in continuum FE analyses of human proximal femur

    Get PDF
    AbstractContinuum finite element (FE) models of bones are commonly generated based on CT scans. Element material properties in such models are usually derived from bone density values using some empirical relationships. However, many different empirical relationships have been proposed. Most of these will provide isotropic material properties but relationships that can provide a full orthotropic elastic stiffness tensor have been proposed as well. Presently it is not clear which of these relationships best describes the material behavior of bone in continuum models, nor is it clear to what extent anisotropic models can improve upon isotropic models. The best way to determine the accuracy of such relationships for continuum analyses would be by quantifying the accuracy of the calculated stress/strain distribution, but this requires an accurate reference distribution that does not depend on such empirical relationships. In the present study, we propose a novel approach to generate such a reference stress distribution. With this approach, stress results obtained from a micro-FE model of a whole bone, that can represent the bone trabecular architecture in detail, are homogenized and the homogenized stresses are then used as a reference for stress results obtained from continuum models. The goal of the present study was to demonstrate this new approach and to provide examples of comparing continuum models with anisotropic versus isotropic material properties.Continuum models that implemented isotropic and orthotropic material definitions were generated for two proximal femurs for which micro-FE results were available as well, one representing a healthy and the other an osteoporotic femur. It was found that the continuum FE stress distributions calculated for the healthy femur compared well to the homogenized results of the micro-FE although slightly better for the orthotropic model (r=0.83) than for the isotropic model (r=0.79). For the osteoporotic bone also, the orthotropic model did better (r=0.83) than the isotropic model (r=0.77). We propose that this approach will enable a more relevant and accurate validation of different material models than experimental methods used so far

    The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials

    Get PDF
    Bone resorption around hip stems is a disturbing phenomenon, although its clinical significance and its eventual effects on replacement longevity are as yet uncertain. The relationship between implant flexibility and the extent of bone loss, frequently established in clinical patient series and animal experiments, does suggest that the changes in bone morphology are an effect of stress shielding and a subsequent adaptive remodeling process. This relationship was investigated using strain-adaptive bone-remodeling theory in combination with finite element models to simulate the bone remodeling process. The effects of stem material flexibility, bone flexibility, and bone reactivity on the process and its eventual outcome were studied. Stem flexibility was also related to proximal implant/bone interface stresses. The results sustain the hypothesis that the resorptive processes are an effect of bone adaptation to stress shielding. The effects of stem flexibility are confirmed by the simulation analysis. It was also established that individual differences in bone reactivity and mechanical bone quality (density and stiffness) may account for the individual variations found in patients and animal experiments. Flexible stems reduce stress shielding and bone resorption. However, they increase proximal interface stresses. Hence, the cure against bone resorption they represent may develop into increased loosening rates because of interface debonding and micromotion. The methods presented in this paper can be used to establish optimal stem-design characteristics or check the adequacy of designs in preclinical testing procedures

    Computational strategies for iterative solutions of large fem applications employing voxel data

    Get PDF
    FE-models for structural solid mechanics analyses can be readily generated from computer images via a 'voxel convesion' method, whereby voxels in a two- or three-dimesional computer image are directly translated to elements in a FE-model. The fact that all elements thus generated are the same creates the possibilities for fast solution algorithm that can compensate for a large number of element. The solving methods described in this paper are based on an iterative solving algorithm in combination with a uniqueelement Element-by-Element (EBE) or with a newly developed Row-by-Row (RBR) matrix-vector multiplication strategy. With these methods it is possible to solve FE-models on the order of 105 3-D brick elements on a workstation and on the order of 106 elements on a Cray computer. The methods are demonstrated for the Boussinesq problem and for FF models that represent a porous trabecular bone structure The results show that the RBR method can be 3.2 times faster than the EBE method. It was concluded that the voxel conversion method in combination with these solving methods not only provides a powerful tool to analyse structures that can not be analysed in another way, but also that this approach can be competitive with traditional meshing and solving techniques

    Knee instability caused by altered graft mechanical properties after anterior cruciate ligament reconstruction:the early onset of osteoarthritis?

    Get PDF
    Anterior cruciate ligament (ACL) rupture is a very common knee joint injury. Torn ACLs are currently reconstructed using tendon autografts. However, half of the patients develop osteoarthritis (OA) within 10 to 14 years postoperatively. Proposedly, this is caused by altered knee kine(ma)tics originating from changes in graft mechanical properties during the in vivo remodeling response. Therefore, the main aim was to use subject-specific finite element knee models and investigate the influence of decreasing graft stiffness and/or increasing graft laxity on knee kine(ma)tics and cartilage loading. In this research, 4 subject-specific knee geometries were used, and the material properties of the ACL were altered to either match currently used grafts or mimic in vivo graft remodeling, i.e., decreasing graft stiffness and/or increasing graft laxity. The results confirm that the in vivo graft remodeling process increases the knee range of motion, up to &gt;300 percent, and relocates the cartilage contact pressures, up to 4.3 mm. The effect of remodeling-induced graft mechanical properties on knee stability exceeded that of graft mechanical properties at the time of surgery. This indicates that altered mechanical properties of ACL grafts, caused by in vivo remodeling, can initiate the early onset of osteoarthritis, as observed in many patients clinically.</p

    A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry

    Get PDF
    Mechanical stimulation can regulate cellular behavior, e.g., differentiation, proliferation, matrix production and mineralisation. To apply fluid-induced wall shear stress (WSS) on cells, perfusion bioreactors have been commonly used in tissue engineering experiments. To gain a better insight into the actual mechanical stimulation on cells in a tissue engineering experiment, computational simulation of the fluidic environment within scaffolds is important. However, biomaterial scaffolds typically have extremely complex geometries. This implies high computational costs for simulating the precise fluidic environment within the scaffolds. In this study, we propose a low-computational cost and feasible technique for quantifying the micro-fluidic environment within the scaffolds, which have extremely complex (or highly irregular) geometries. This technique is based on a multiscale computational fluid dynamics approach. The validation results have demonstrated that this approach can capture the WSS distribution in most regions within the scaffold. Importantly, the central process unit time needed to run the model is considerably low

    The Content of Native American Cultural Stereotypes in Comparison to Other Racial Groups

    Get PDF
    abstract: Despite a large body of research on stereotypes, there have been relatively few empirical investigations of the content of stereotypes about Native Americans. The primary goal of this research was to systematically explore the content of cultural stereotypes about Native Americans and how stereotypes about Native Americans differ in comparison to stereotypes about Asian Americans and African Americans. Building on a classic paradigm (Katz and Braly, 1933), participants were asked to identify from a list of 145 adjectives those words associated with cultural stereotypes of Native Americans and words associated with stereotypes of Asian Americans (Study 1) or African Americans (Study 2). The adjectives associated with stereotypes about Native Americans were significantly less favorable than the adjectives associated with stereotypes about Asian Americans, but were significantly more favorable than the adjectives associated with stereotypes about African Americans. Stereotypes about Native Americans, Asian Americans and African Americans were also compared along the dimensions of the stereotype content model (SCM; Fiske, et al., 2002), which proposes that stereotypes about social groups are based on the core dimensions of perceived competence, warmth, status, and competitiveness. Native Americans were rated as less competent, less of a source of competition, and lower in social status than Asian Americans, and less competent and lower in social status than African Americans. No significant differences were found in perceived warmth across the studies. Combined, these findings contribute to a better understanding of stereotypes about Native Americans and how they may differ from stereotypes about other racial groups.Dissertation/ThesisM.S. Psychology 201

    Automatic generation of subject-specific finite element models of the spine from magnetic resonance images

    Get PDF
    The generation of subject-specific finite element models of the spine is generally a time-consuming process based on computed tomography (CT) images, where scanning exposes subjects to harmful radiation. In this study, a method is presented for the automatic generation of spine finite element models using images from a single magnetic resonance (MR) sequence. The thoracic and lumbar spine of eight adult volunteers was imaged using a 3D multi-echogradient-echo sagittal MR sequence. A deep-learning method was used to generate synthetic CT images from the MR images. A pre-trained deeplearning network was used for the automatic segmentation of vertebrae from the synthetic CT images. Another deep-learning network was trained for the automatic segmentation of intervertebral discs from the MR images. The automatic segmentations were validated against manual segmentations for two subjects, one with scoliosis, and another with a spine implant. A template mesh of the spine was registered to the segmentations in three steps using a Bayesian coherent point drift algorithm. First, rigid registration was applied on the complete spine. Second, non-rigid registration was used for the individual discs and vertebrae. Third, the complete spine was non-rigidly registered to the individually registered discs and vertebrae. Comparison of the automatic and manual segmentations led to dice-scores of 0.93–0.96 for all vertebrae and discs. The lowest dice-score was in the disc at the height of the implant where artifacts led to under-segmentation. The mean distance between the morphed meshes and the segmentations was below 1 mm. In conclusion, the presented method can be used to automatically generate accurate subject-specific spine models

    Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering

    Get PDF
    Mechanobiology research is for understanding the role of mechanics in cell physiology and pathology. It will have implications for studying bone physiology and pathology and to guide the strategy for regenerating both the structural and functional features of bone. Mechanobiological studies in vitro apply a dynamic micro-mechanical environment to cells via bioreactors. Porous scaffolds are commonly used for housing the cells in a three-dimensional (3D) culturing environment. Such scaffolds usually have different pore geometries (e.g. with different pore shapes, pore dimensions and porosities). These pore geometries can affect the internal micro-mechanical environment that the cells experience when loaded in the bioreactor. Therefore, to adjust the applied micro-mechanical environment on cells, researchers can tune either the applied load and/or the design of the scaffold pore geometries. This review will provide information on how the micro-mechanical environment (e.g. fluid-induced wall shear stress and mechanical strain) is affected by various scaffold pore geometries within different bioreactors. It shall allow researchers to estimate/quantify the micro-mechanical environment according to the already known pore geometry information, or to find a suitable pore geometry according to the desirable micro-mechanical environment to be applied. Finally, as future work, artificial intelligent – assisted techniques, which can achieve an automatic design of solid porous scaffold geometry for tuning/optimising the micro-mechanical environment are suggested

    Feasibility of rigid 3D image registration of high-resolution peripheral quantitative computed tomography images of healing distal radius fractures

    Get PDF
    For accurate analysis of bone formation and resorption during fracture healing, correct registration of follow-up onto baseline image is required. A per-fragment approach could improve alignment compared to standard registration based on the whole fractured region. In this exploratory study, we tested the effect of fragment size and displacement on a per-fragment registration, and compared the results of this per-fragment registration to the results of the standard registration in two stable fractures and one unstable fracture. To test the effect of fragment size and displacement, high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of three unfractured radii were divided into subvolumes. Different displacements in x-, y, or z-direction or rotations around each axis were applied, and each subvolume was registered onto the initial volume to realign it. Next, registration of follow-up onto baseline scan was performed in two stable and one unstable fracture. After coarsely aligning the follow-up onto the baseline scan, a more accurate registration was performed of the whole fracture, i.e. the standard registration, and of each fracture fragment separately, i.e. per-fragment registration. Alignment was checked using overlay images showing baseline, follow-up and overlap between these scans, and by comparing correlation coefficients between the standard and per-fragment registration. Generally, subvolumes as small as 300 mm3 that were displaced up to 0.82 mm in x- or y-, or up to 1.64 mm in z-direction could be realigned correctly. For the fragments of all fractures, correlation coefficients were higher after per-fragment registration compared to standard registration. Most improvement was found in the unstable fracture and one fragment of the unstable fracture did not align correctly. This exploratory study showed that image registration of individual subvolumes, such as fracture fragments, is feasible in both stable and unstable fractures, and leads to better alignment of these fragments compared to an approach that is based on registration using the whole fractured region. This result is promising for additional analysis of bone formation and resorption in HR-pQCT studies on fracture healing
    • …
    corecore