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The generation of subject-specific finite elementmodels of the spine is generally a
time-consuming process based on computed tomography (CT) images, where
scanning exposes subjects to harmful radiation. In this study, a method is
presented for the automatic generation of spine finite element models using
images from a single magnetic resonance (MR) sequence. The thoracic and
lumbar spine of eight adult volunteers was imaged using a 3D multi-echo-
gradient-echo sagittal MR sequence. A deep-learning method was used to
generate synthetic CT images from the MR images. A pre-trained deep-
learning network was used for the automatic segmentation of vertebrae from
the synthetic CT images. Another deep-learning network was trained for the
automatic segmentation of intervertebral discs from the MR images. The
automatic segmentations were validated against manual segmentations for two
subjects, one with scoliosis, and another with a spine implant. A template mesh of
the spine was registered to the segmentations in three steps using a Bayesian
coherent point drift algorithm. First, rigid registration was applied on the complete
spine. Second, non-rigid registration was used for the individual discs and
vertebrae. Third, the complete spine was non-rigidly registered to the
individually registered discs and vertebrae. Comparison of the automatic and
manual segmentations led to dice-scores of 0.93–0.96 for all vertebrae and discs.
The lowest dice-score was in the disc at the height of the implant where artifacts
led to under-segmentation. The mean distance between the morphed meshes
and the segmentations was below 1 mm. In conclusion, the presentedmethod can
be used to automatically generate accurate subject-specific spine models.

KEYWORDS

synthetic computed tomography, deep-learning, mesh morphing, personalized
medicine, vertebra, intervertebral disc

1 Introduction

Subject-specific finite element (FE) models of the spine are often used in research to
evaluate the design of treatments (e.g., when designing cages for spinal fusion (Loenen et al.,
2022) and braces for the correction of scoliosis (Vergari et al., 2015)), bone strength
(Faulkner et al., 1991) and the progression of load-adaptive processes (Rijsbergen et al.,
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2018). The generation of suchmodels is typically based on computed
tomography (CT) scans from which the 3D geometry of the
vertebrae as well as their density can be derived. However, such
scans provide little information about intervertebral disc (IVD)
shape and properties, and requires the exposure of subjects to
harmful radiation, which in particular for children is a major
issue (Miglioretti et al., 2013). Magnetic resonance (MR) imaging
is better suited for the visualization of soft tissues such as the IVD
and does not include ionizing radiation exposure but provides very
limited information about osseous structures. Several studies
therefore combined CT and MR images in order to obtain
subject-specific information for both bone and IVD, but this
approach obviously requires scanning subjects with both
modalities, still involves harmful radiation, and requires co-
registration of CT and MR data, which is not trivial (Castro-
Mateos et al., 2016).

New techniques based on deep-learning are emerging that allow
for the generation of synthetic CT (sCT) scans based on MR scans
(Florkow et al., 2020; Parrella et al., 2023; Zhao et al., 2023). These

synthetic scans resemble CT images but are based on a set of MR
sequences only. Using deep-learning techniques, the image
information obtained from the different sequences are translated
to Hounsfield Units. Since these scans are inherently aligned with
the original MR scans, soft tissues and hard tissues can be segmented
and modelled without the requirement for co-registration of images
or structures. However, due to the complexity of the spine geometry,
accurate segmentation of these images and their translation to finite
element models is challenging.

With increases in computational power and the development of
U-Net deep-learning strategies (Ronneberger et al., 2015), automatic
segmentation of anatomical structures has becomemore feasible. Many
of the biomedical image analysis competitions in the last decade
involved the development of an automatic segmentation algorithm
(Maier-Hein et al., 2018). In these challenges datasets containing images
and resulting deep-learning networks entered in the competition are
often openly accessible. For the spine, the top performing deep-learning
networks, based on the U-Net structure, were able to label vertebrae
with an accuracy over 94% reaching a dice-score of 0.9 for the

TABLE 1 Volunteer data.

Volunteer Scanned levels Deep-learning set IVD Note

1 T4-L4 Test/train

2 T1-L3 Test/train

3 T2-L4 Test/train

4 T4-L5 Test/train

5 T6-S1 Test/train

6 T3-L5 Test/train

7 T3-L4 Validation L4-S1 spine implant

8 T5-L5 Validation Scoliosis with ~30o Cobb angle

FIGURE 1
Sagittal slices from the 3D in- and out-of-phase images, the fat and water reconstructed images, and the generated synthetic CT images.
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segmentation of vertebrae (Payer et al., 2020). Isensee et al. developed a
self-configuring framework including a U-Net structure that can be
used as an out-of-the-box tool for many biomedical image
segmentation purposes (Isensee et al., 2021). It is expected that these
networks can also be employed for the automatic segmentation of
vertebrae and IVDs from MR and sCT images.

To further automate the generation of subject-specific FE
models of the spine, meshing should also be performed
automatically. Due to the complexity of the spine, including
vertebrae, IVDs, and ligaments, creating a good quality mesh can
be difficult. A commonly used approach is to use a template mesh
including all desired structures that can then be morphed to a
subject-specific target geometry using non-rigid registration. Since
spine models are mostly based on CT scans, morphing is generally
performed on individual vertebrae (Hadagali et al., 2018; Rubenstein
et al., 2022), where then later the IVDs can be added through
interpolation (Campbell and Petrella, 2015; Caprara et al., 2021).
With the use of co-registered CT and MR, promising results have
been shown when morphing a lumbar spine mesh to segmentations
of the vertebrae and IVDs (Castro-Mateos et al., 2016). Non-rigid
registration with (variations on) iterative closest point algorithms
has long been regarded as the state-of-the-art. Recently, a Bayesian
coherent point drift (BCPD) algorithm has been developed (Hirose,
2021a). This algorithm can be seen as an adaptation of a previously
defined coherent point drift algorithm (Myronenko and Song, 2010)
with the added benefits that it always converges and can easily be
accelerated.

The aim of this paper is to develop a new approach to create
patient-specific FE models of the spine in a fully automated manner
from MR images and their derived sCT images. This approach
combines special MR sequences, deep-learning algorithms for sCT
generation and the automatic segmentation of the IVDs and
vertebrae, and mesh morphing using a BCPD algorithm. A
specific aim of this study was to test the accuracy of the
generated meshes for normal spines as well as for a scoliotic case.

2 Methods

2.1 Image acquisition

The study was eligible for expedited review as decided by the
local METC (protocol ID 15–466). Eight adult volunteers were
recruited and provided informed and written consent for MR

FIGURE 2
Pipeline for the manual and automatic segmentations. For the
IVDs, the MR images were used and nnU-Net was trained, tested, and
validated for the automatic segmentations. sCT images were
synthesized by MRIguidance BV using their previously validated
deep-learning based algorithm. An existing pretrained network was
validated for the automatic segmentations of the vertebrae from these
sCT images. 1(Isensee et al., 2021); 2,3(Payer et al., 2020; Sekuboyina
et al., 2021).

FIGURE 3
Pipeline for the morphing of the mesh. The template mesh is morphed in three steps. First, a rigid registration to the segmentations is applied.
Second, the meshes of the individual IVDs and vertebrae are non-rigidly registered to the respective segmentations. Third, the complete mesh of the
spine is registered to the non-rigidly registered meshes of the individual bodies to prevent a mismatch in alignment between individual bodies in the final
mesh.
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imaging of the thoracic and lumbar spine (Table 1). Out of the eight
volunteers, six have no known spine morbidities, one has scoliosis
(~30° Cobb angle), and one has undergone L4-S1 spinal fusion

surgery (SUSTAIN-O interbody Spacer made of PEEK, REVERE
Stabilization System for rods, screws and connectors, TRANSITION
Stabilization System for the semi-rigid components; Globus

TABLE 2 Parameter settings for the BCPD algorithm at the different steps. Where a range is given, the value was optimized within these limits.

Rigid registration Individual vertebrae Individual IVDs Complete spine

Lambda 1e9 10–2,500 1–4,000 0.1–50

Beta 2 0.25–1.5 0.5–2 0.5–2

Omega 0 0.01 0.01 0.01

Gamma 10 0.5 0.1 0.5

c 1e-6 1e-6 1e-6 1e-6

n 500 500 500 500

FIGURE 4
Accuracy of automatic segmentation for the subject with scoliosis (top) and the subject with implants (bottom). The selected IVDs and vertebrae for
each subject are those where the dice-score was the lowest (top) or where the maximum distance from the automatic to the manual segmentation was
the highest (bottom), excluding the region with the implant. The HausdorffMean refers to themean of themaximumHausdorff distances of the individual
bodies.
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Medical, Audubon, United States). 3D Sagittal in-phase, and out-of-
phase scans were taken of the spine on a 1.5 tesla MR scanner
(Philips Healthcare, Best, Netherlands, software release 5.7) using
the built in posterior coil (Figure 1). RF-spoiled T1-weighted multi-
echo-gradient-echo sagittal MR images were acquired with the
following parameter settings: field of view (AP × FH × LR) 220 ×
420 × 100 mm3, acquisition voxel size 1 × 1 × 2 mm3, reconstruction
voxel size 0.625 × 0.625 × 1 mm3, flip angle 10°, TR/TE1/TE2 =
7 ms/2.1 ms/4.2 ms, and scan duration = 4 min 48 s. TE1 and
TE2 were chosen for out-of-phase and in-phase, where water
and fat images at 1.5 tesla were automatically reconstructed by
the MR system using the Dixon method (Dixon, 1984). Synthetic
CT scans were generated from the in- and out-of-phase images
using a commercial pretrained deep-learning algorithm (Figure 1;
BoneMRI V1.6 research version, MRIguidance BV, Utrecht,
Netherlands).

2.2 Segmentation

An existing self-configuring deep-learning network (nnU-Net
(Isensee et al., 2021)) was trained for the automatic segmentation of
the IVDs (Figure 2). First the IVDs were manually segmented from
the out-of-phase image stacks to represent the ground truth labels.
The in-phase, out-of-phase, fat, water, and the ground truth label
images of six healthy volunteers were then used for the training of

the nnU-Net. This network includes training using five different
test/train splits and automatic post-processing. Validation was
performed on the remaining two volunteers, of which one with
scoliosis and one with spinal implants.

Manual labelling and segmentation of the vertebrae was done on
the sCT images of the volunteers with the implant and scoliosis.
Automatic labelling and segmentation of the vertebrae was
performed on the sCT images using a pretrained deep-learning
network (Payer et al., 2020). This network has previously been
trained and validated on the dataset of the Large Scale Vertebrae
Segmentation Challenge 2020 (VerSe 2020 (Sekuboyina et al.,
2021)). All vertebrae with more than half of their body inside of
the field of view were included for validation between the automatic
and manual segmentations.

For the validation, the accuracy of the automatic segmentations
of all individual vertebrae and the IVDs in the validation sets is
evaluated using two scores. First, the dice-score is calculated to
quantify the overlap between the manual and automatic
segmentation (Zou et al., 2004). A dice-score of 0 indicates no
overlap between segmentations and 1 indicates perfect
overlap. Second, the Hausdorff distance is calculated to find the
maximum of all minimum distances between the automatic and the
manual segmentations. This measure is bidirectional, measuring the
distances from the automatic to the manual segmentations and vice-
versa, and can thus capture both under- and over-segmentation. The
region where the largest Hausdorff distance is calculated is the

FIGURE 5
Artifacts originating from the spine implant on an acquired in-phase MR image (left), shown as dark signal voids, with manual (red) and automatic
(shaded yellow) segmentations of the IVD; and an sCT image (right) of the same slice with artifacts originating from the signal voids leading to inaccurate
segmentations of the vertebrae.
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region where the automatic and manual segmentations differ most.
For the volunteer with spinal implants the IVDs and vertebrae from
T3-L2 were considered ‘healthy’ and unaffected by image artifacts
coming from the implant.

2.3 Mesh morphing

For the morphing of the spine a template mesh was extracted
from a commercially available global human body model (GHBMC
F05-P, Elemance, LLC, Winston Salem, United States). The
vertebrae, IVDs, and ligaments from T1 to L5 were separated
from the global model. The individual vertebrae and IVDs, and
the section of the spine inside the field of view was then morphed to
the segmentations using a previously developed, accelerated BCPD
algorithm (Figure 3 (Hirose, 2021b; Hirose, 2021a);). Parameters
that need to be defined were: Lambda, controlling the expected
deformation vector length; Beta, controlling the range for the
smoothing of the deformation vector; Omega, the outlier

probability; Gamma, controlling the randomness of point
matching at the beginning of the optimization; and c and n the
convergence tolerance and maximum number of iterations,
respectively. Some of these parameters were set to a fixed value
and others were varied for different registration tasks (Table 2). The
selected ranges for optimization were limited to improve the speed
of the optimization. The upper limits were selected to lead to little
deformation but high-quality meshes. The lower limits were selected
to guarantee some self-intersecting elements, to ensure that the
optimum would be between the limits. Default settings for
acceleration based on the Nystrom method were used (Williams
and Seeger, 2000).

From the template mesh, point clouds were created of the nodes
at the surface of each selected vertebra and IVD. Shared nodes
between the IVDs and vertebrae were included in these surface node
sets. From the segmentations, point clouds were generated based on
the voxels at the surface of each vertebra and IVD in the field of view.
First, the point cloud of the full spine section from the template was
rigidly registered to the combined point clouds of the segmentations

FIGURE 6
Separately optimized morphing of the discs and vertebrae for the subject with scoliosis (top) and for the subject with spine implants (bottom). The
selected IVDs and vertebrae are those with the highest maximum distance between morphed mesh and segmentation, excluding the region with the
implant.
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of the IVDs and vertebrae. Second, individual vertebrae and IVDs
were non-rigidly registered. For this step the parameters used for
registration were optimized for each body. In each iteration the
registration accuracy was assessed by calculating the mean and
maximum distance between the point clouds. Additionally, the
mesh was rebuilt by linear interpolation of the deformation of
the surface nodes. This mesh was checked for self-intersecting
elements. The parameter Lambda was decreased each iteration,
generally improving the registration accuracy until any self-
intersecting elements were present. At that point the setting Beta
was increased (increasing the smoothing of the deformation vector).
Once the mean (for IVDs) or maximum (for vertebrae) distance
between the point clouds no longer improved, the best Lambda of
the second to last tested Beta were used for the final registration of
the body. Third, the rigidly registered point cloud of the full spine
section in the first step was registered to the collection of the
individually registered bodies. This step was performed to ensure
that the nodal connection between all vertebrae and IVDs is
maintained. Optimization of the settings for the registration of
the spine section was performed the same way as for the
individual bodies.

The accuracy of the complete morphing cycle is quantified by
measuring the distance from the surface nodes to the closest point
on the surface of the segmentations. Additionally, the mesh quality
of the morphed mesh is compared to that of the template. To define
the mesh quality the Jacobian, maximum warpage, maximum aspect
ratio, and maximum skew angle for each element are calculated.

3 Results

3.1 Segmentation

For the scoliotic spine, overall dice-scores of 0.93 (0.91–0.95)
and 0.96 (0.95–0.97) were reached for the IVDs and the vertebrae,

respectively (Figure 4). The largest differences between the
segmentations of the vertebrae can be seen where the transverse
processes reach outside the field of view. At these points the
automatic segmentations do not consistently predict the bone to
reach to the edge of the field of view, leading to under-segmentation.
For the volunteer with implants, the achieved dice-score was 0.95 for
all IVDs, excluding the L4-L5 IVD (0.84–0.97 for the individual
IVDs). For the T3 to L2 vertebrae the dice-score was 0.95
(0.86–0.97 for the individual vertebrae). The lowest dice-scores
come from the top of the spine (T3 and the T2-T3 IVD) because
these are close to the top of the field of view where the image quality
is lower and manual segmentations may be incomplete. Generally,
for the rest of the IVDs the largest differences between the automatic
and manual segmentations were found in the anterior and posterior
regions. Here the automatic segmentations may include parts of
ligaments or cartilage on the ribs. Due to the implant, artifacts were
visible in the acquired MR images, and as result also in the sCT
images which were reconstructed from the acquired MR images.
These artifacts are inherent to the fundamentals of MR imaging. In
this analysis, these artifacts led to a clear under-segmentation of the
IVD near the pedicle screws (Figure 5). In the vertebrae this led to
over-segmentation of the posterior processes, including at the
vertebra above the level of the implant.

3.2 Mesh morphing

For the scoliotic spine, the mean (SD) distance for all of the
individually morphed IVDs to the automatic segmentations was
0.39 (0.16) mm (Figure 6). The maximum distances ranged from
0.7 to 2.6 mm for the individual IVDs. The highest distance was at
the IVD between T6 and T7, where high deformations are required
due to the large initial difference between the template IVD and the
subject-specific IVD (Figure 7). The distance for all vertebrae was
0.46 (0.24) mm. The maximum distances varied from 1.3 to 3.7 mm

FIGURE 7
Initial difference between template mesh, automatic segmentation and the morphed mesh of the T6-T7 IVD of the subject with implants. The
irregular shape and presence of the narrow region at the posterior side of the template leads to skewed elements.
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for the individual vertebrae, with the maximum distance at
T12 between the facet joints. For the volunteer with implants, the
mean distance from the individually morphed IVDs, except the L4-
L5 IVD, to the automatic segmentations was comparable to that of
the scoliotic spine (0.39 (0.14) mm). For the vertebrae, the mean
distance for the individual T3-L2 vertebrae (levels superior to the
implant) was 0.42 (0.18) mm.

To ensure a good connection between the elements of the IVDs
and vertebrae, the complete spinal segment was morphed to the
individually morphed bodies. When morphing the complete spine,
the mesh remains more similar to the template compared to when
the individual bodies are morphed. For the volunteer with scoliosis,
morphing of the complete spine led to a mean (SD) distance of 0.73
(0.54) mm for the IVDs with maximum distances ranging from
1.6 to 5.4 mm for the individual IVDs (Figure 8). For the vertebrae,
the mean distance was 0.78 (0.70) mm with the maximum distances
ranging from 2.9 to 8.0 mm for the individual vertebrae. For the
volunteer with implants, morphing of the complete spine led to a
mean distance of 0.74 (0.64) mm for the IVDs with maximum
distances ranging from 1.6 to 8.2 mm for the individual IVDs
(Figure 8). For the vertebrae, the mean distance was 0.77 (0.90)

mm with the maximum distances ranging from 2.1 to 15.8 mm for
the individual vertebrae. The largest distances can be seen at the
posterior processes at the height of the implant. The maximum
distance for T3-L1 was 5.2 mm.

The quality of the final mesh was similar to that of the template
mesh for both subjects (Figure 9). In both cases overall mesh quality
was high, with more than 96% of the elements having a
Jacobian >0.5, a maximum warpage <30°, a maximum aspect
ratio <5, and a maximum skew angle <50°. The morphing of the
individual IVDs and vertebrae led to a larger reduction of the mesh
quality. The lowest mesh quality was found in the T6-T7 IVD of the
subject with implants, where 64% of elements had a maximum skew
angle >50° (Figure 7).

4 Discussion

In this paper a new approach for the automatic generation of FE
models from MR and synthetic CT images is explored. It was found
that using two existing deep-learning networks the IVDs and
vertebrae can be accurately segmented from MR and sCT,

FIGURE 8
Accuracy ofmeshmorphing of the complete spine for a subject with scoliosis (top) and for a subject with spine implants (bottom). The selected IVDs
and vertebrae are those with the highest maximum distance between morphed mesh and segmentation, excluding the region with the implant.
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respectively. It was also found that using a BCPD algorithm a
template mesh can be registered to the automatic segmentations
resulting in a high-quality subject-specific mesh that can be used for
FEmodelling. The images acquired in this study cover a large field of
view, including the lumbar and thoracic spine. The use of sCT
images enabled the segmentation of bone and IVD from 1 scan that
takes approximately 5 min scanning time. In this way, subjects are
not exposed to harmful radiation and the images are inherently
aligned alleviating the need for co-registration. The template mesh
was extracted from a commercially licensed model of a 24-year old
female, where the skeletal structures are based on CT images. This
template was selected because it is an accurate geometrical
representation of a healthy spine. Tests with other template
models (results not shown), such as the openly available Total
Human Model for Safety (Toyota Motor Corporation, Aichi,
Japan), provided similar results, indicating the feasibility of using
the morphing method with other templates.

The automatic segmentations work well with high dice-scores
for the complete spine and for the individual IVDs and vertebrae.
The network used for the segmentations of the vertebrae was
pretrained on an existing set of 374 CT images that were made
available for the Large Scale Vertebrae Segmentation Challenge
2020 (VerSe 2020 (Sekuboyina et al., 2021)). The validation
performed on the images in that set resulted in dice-scores of
0.91, lower than the 0.94 and 0.96 from validation against the
subjects in this study. This is an indication that the sCT images
are well-suited for the automatic segmentation of vertebrae. The
network used for the segmentation of the IVDs was not
previously trained on IVDs but also performed well. Dice-
scores were higher than achieved for a challenge posed in
2018 (Zheng et al., 2019), where the best models entered
reached a dice-score of 0.91, and another trained on the same
dataset (not entered in the challenge) reached 0.92 (Dolz et al.,
2018).

The largest differences between the automatic and manual
segmentations of the vertebrae were found near the edges of the
field of view and near the spine implant. In these regions the sCT
images are dissimilar from true CT images. Even though the training
set for the network used for the segmentation of the vertebrae
included spines with implants, the dissimilarity between the artifacts
in true CT and sCT is too large. Accurate segmentation in these
regions on sCT is currently impossible due to the nature of MR.
With MR no signal is obtained around metal implants, which leads
to fundamentally different artifacts on sCT compared to metal
artifacts in true CT images. In the IVDs the highest inaccuracies
were found in their anterior and posterior regions. These regions
coincide with the location of the posterior and anterior longitudinal
ligaments. The ligaments are mostly indistinguishable from the
annulus fibrosus on the MR images, which also led to
inconsistencies in the ground truth manual segmentations.

Morphing using the publicly available BCPD algorithm (Hirose,
2021a) works well, especially for spines where individual bodies
(vertebrae and IVDs) have a near-normal shape. In the case of
uncommon features, such as artifacts due to implants, the morphing
of the complete spine still leads to a high-quality mesh, but slightly
deviates from the segmentation. While in this case this is due to
image artifacts, it is possible that pathologies that can results in large
variations in local shape (e.g., lesions; Schmorl nodes; herniated
IVDs) will also not bemeshed accurately. However, due to themulti-
scale nature of the presented method, these local variations can be
captured when morphing individual bodies. The optimization
ensures that the resulting mesh can be used for FE modelling.
However, an initial guess of set parameters and sufficiently large
discrete steps are required. An exhaustive parameter sensitivity
study and improvement of the optimization algorithm is
expected to lead to some further improvement. In the current
implementation, the template mesh has a clear influence on the
outcome when morphing the complete spine. An adaptation to the

FIGURE 9
Shape quality of the elements of the template, individually morphed, and completely morphed mesh of the subject with scoliosis.
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algorithm could be developed to connect the individually morphed
bodies maintaining the accuracy of the local morphing.
Alternatively, a multi-block approach could be implemented.
This has been proven to give good results for the generation of
meshes for thoracic spines with Cobb angles up to 90° (Hadagali
et al., 2018). A disadvantage of such a technique would be that re-
meshing of individual blocks is required, thus not maintaining the
element connections in the template.

A limitation of this study is that not all biological variation that is
relevant for the biomechanics of the spine are included in the
presented segmentation and morphing strategy. The annulus
fibrosus and the nucleus pulposus are morphed as one, even
though changes in size and location of the nucleus can lead to
significant changes in, e.g., predicted peak force under compression
(Du et al., 2021; Liu and El-Rich, 2020). A T2-weighted MR sequence
could be added for the separate segmentation of the nucleus pulposus
(Castro et al., 2014) so that it can also be included in the morphing.
Another limitation is that the creation of the sCT images has not yet
been explicitly validated for the thoracic spine. However, clinical
evidence is already available for the hip joint (Florkow et al., 2022),
and the lumbar (Morbée et al., 2021; Davidar et al., 2023) and cervical
spine (van der Kolk et al., 2022). These studies extensively validated
the similarity between segmentations from sCT and true CT,
indicating that the accuracy of the sCT images is more than
sufficient for the segmentation of the vertebrae. Additionally, the
Hounsfield units in the sCT images are similar to that of true CT
images (Florkow et al., 2020; van der Kolk et al., 2022). Accurate
measurements of the Hounsfield units means that these images can
also be used to derive the bone density and map material properties
such as the Young’s modulus to elements in the FE models (Taddei
et al., 2007). A lesser limitation is that the facet joints are not explicitly
included. Finite element models of the spine have shown good results
without explicitly including a cartilage layer and, for example, using a
soft contact definition between vertebrae (Mengoni, 2021). However,
the 3D shape of the joint is important for a proper understanding of its
function (Inoue et al., 2020). Separate segmentation and modelling of
the facet joints from the MR images could lead to improved
biomechanical models of the spine.

5 Conclusion

The new approach presented in this study can be used for the
automatic generation of subject-specific spine models. It can be used
for both the morphing of individual vertebrae and IVDs and for the
morphing of a complete spine. This allows for the creation of multi-
scale FE models with little effort. Additionally, the automatic
segmentations could independently be used for morphometric
measurements of the IVDs and vertebrae. For improved subject-
specific biomechanical measurements, segmentation and morphing
of the nucleus pulposus and facet joints should be added.
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