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Continuum finite element (FE) models of bones are commonly generated based on CT scans. Element

material properties in such models are usually derived from bone density values using some empirical
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relationships. However, many different empirical relationships have been proposed. Most of these will

provide isotropic material properties but relationships that can provide a full orthotropic elastic

stiffness tensor have been proposed as well. Presently it is not clear which of these relationships best

describes the material behavior of bone in continuum models, nor is it clear to what extent anisotropic

models can improve upon isotropic models. The best way to determine the accuracy of such

relationships for continuum analyses would be by quantifying the accuracy of the calculated stress/

strain distribution, but this requires an accurate reference distribution that does not depend on such

empirical relationships. In the present study, we propose a novel approach to generate such a reference

stress distribution. With this approach, stress results obtained from a micro-FE model of a whole bone,

that can represent the bone trabecular architecture in detail, are homogenized and the homogenized

stresses are then used as a reference for stress results obtained from continuum models. The goal of the

present study was to demonstrate this new approach and to provide examples of comparing continuum

models with anisotropic versus isotropic material properties.

Continuum models that implemented isotropic and orthotropic material definitions were generated

for two proximal femurs for which micro-FE results were available as well, one representing a healthy

and the other an osteoporotic femur. It was found that the continuum FE stress distributions calculated

for the healthy femur compared well to the homogenized results of the micro-FE although slightly

better for the orthotropic model (r¼0.83) than for the isotropic model (r¼0.79). For the osteoporotic

bone also, the orthotropic model did better (r¼0.83) than the isotropic model (r¼0.77). We propose

that this approach will enable a more relevant and accurate validation of different material models than

experimental methods used so far.

& 2012 Elsevier Ltd. Open access under the Elsevier OA license.
1. Introduction

Continuum finite element (FE) analysis has become a standard
computational tool for the analysis of bone mechanical behavior
in orthopedic biomechanics. It is commonly used to evaluate bone
loading conditions, e.g. after the placement of implants (Huiskes,
1993; Huiskes and Chao, 1983; Pettersen et al., 2009; Weinans
et al., 2000) and to evaluate bone strength e.g. in case of
osteoporosis or drug treatments (Chevalier et al., 2010; Guo and
Kim, 2002; Tawara et al., 2010; Verhulp et al., 2008). Patient-
specific finite element models are usually generated based on
clinical CT scans. From such scans, the geometry as well as the
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bone density distribution can be easily derived. Empirical rela-
tionships are then needed to calculate bone material parameters
from the measured density distribution.

Many different empirical relationships have been described in
the literature. With the more simple ones, bone is modeled as
isotropic and a power law relationship is used to calculate the
isotropic Young’s modulus from the bone density (Carter and Hayes,
1976; Keller, 1994; Keyak et al., 1994, 1997; Morgan et al., 2003;
Rice et al., 1988). It is known, however, that cancellous bone can be
highly anisotropic. More advanced relationships that can describe
the full anisotropic elastic behavior of cancellous bone have been
developed as well. With such relationships, bone elastic behavior is
usually described as orthotropic with the principal orthotropic axes
determined by the underlying micro-architecture and some power
law to calculate the values of the orthotropic elastic constants. In
this case also, several different orthotropic relationships have been
developed (Cowin, 1985; Cowin and Turner, 1992; Kabel et al.,
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1999b; Turner et al., 1990; Yang et al., 1998; Zysset and Curnier,
1995). In these relationships, the orientation of the trabeculae is
usually quantified by a second rank fabric tensor which represents
the average trabecular orientation (Harrigan and Mann, 1984;
Odgaard, 1997). Since this can be difficult or impossible to measure
from clinical CT scans, it has been proposed as well to base the
trabecular orientation on the anatomical site (Yang et al., 1998).

It presently is unclear which relationship would provide the
best results for continuum FE analyses of whole bones. Moreover,
it is even unclear to what extent the use of such more advanced
anisotropic relationships would improve the accuracy of the finite
element calculations over more simple isotropic models.

In order to test the accuracy of different isotropic or anisotropic
relationships for modeling material properties in continuum FE
analyses, a ‘gold standard’ is required relative to which the results
of the analyses can be tested. So far, experimental test on whole
bones have been used as a reference (Chevalier et al., 2008; Keyak
et al., 1993; Pahr and Zysset, 2009; Taddei et al., 2006; Trabelsi et al.,
2011). For whole bones, however, experimental results are usually
limited to surface strain measurements and to measurement of the
stiffness of the whole bone. Based on such measurements, it is not
possible to validate the stress or strain distribution within the
cancellous bone tissue, which is the most important region for
implant fixation. Also, the surface strains and total bone stiffness
obtained from FE models might not be very sensitive to the choice of
the empirical constants, as long as the cortical bone stiffness is well
represented, nor to the choice of an isotropic versus an anisotropic
model for the cancellous bone.

In the present study, we propose another approach to test the
accuracy of different empirical material laws for continuum FE
analyses of bone. With this approach, results obtained from a
micro-FE model of a whole bone that can represent the bone
Fig. 1. Design of the study; results of a continuum-level FE model that incorpo-

rates the material law to be tested (left) are compared to homogenized micro-FE

results that are taken as the gold standard (right).
trabecular architecture in detail are used as a reference (Fig. 1).
Such micro-FE models thus account for the effect of the bone density
and anisotropy that result from the bone micro-architecture without
the need for any empirical relationships. The stresses and strains
obtained from such models are those at the level of the bone tissue,
but after homogenization of these stresses and strains they can be
directly compared to those obtained from continuum FE models.
The difference between the standard approach to calculate the
continuum level stress distribution and the approach that we take
here to generate a ‘gold standard’ is depicted in Fig. 1. With the
standard approach, the bone micro-architecture is homogenized to a
density and fabric value, and a continuum FE model is created with
material properties based on these homogenized values. With
the approach that we take here, a micro-FE model is used to
calculate bone tissue level stresses and strains and the results are
homogenized.

The goal of the present study was to demonstrate this new
approach by comparing the calculated stress distributions in a
continuum model of a healthy and an osteoporotic femur,
implementing isotropic and anisotropic material properties, with
homogenized micro-FE results of the same bones.
2. Materials and methods

2.1. Samples

Two human proximal femurs, a healthy femur and a severely osteoporotic

femur collected for an earlier study (van Rietbergen et al., 2003), were used. These

femurs were scanned using a micro-CT scanner (micro-CT80; Scanco, Brüttisellen,

Switzerland) at a resolution of 80 mm, covering a length of approximately 92 mm

of each femur. After scanning, a thresholding algorithm was applied to separate

the bone from the marrow phase. More information about the samples and

scanning procedure can be found in van Rietbergen et al. (2003).

2.2. Creation of continuum-FE meshes

Continuum finite element models of proximal femurs were generated based

on contours of the bone periosteal surface that were generated semi-automatically

using the software provided with the micro-CT scanner. Using a marching cubes

algorithm on the volume comprised by these contours, a triangularization of the

bone surface was obtained. This surface was converted to STL format and

imported into ANSYS 12.1 (Ansys, Inc., United States) for volumetric meshing.

Meshing was done using tetrahedron elements with a typical size of 2 mm.

2.3. Calculation of homogenized material properties

In order to calculate anisotropic material properties, an element density and

fabric tensor were calculated for each element. This was done using a semi-automatic

mapping algorithm. In the first step; the femur was separated into two compart-

ments: a cortical and a cancellous one using the software provided with the micro-CT

scanner (IPL, Scanco Brüttisellen, Switzerland). A minimum of 1 mm cortical thick-

ness was assumed near bone external surfaces. Using an in-house developed

algorithm, the type (cortical or cancellous) and number of voxels within each

element were determined. For each element, fully or partially within the cancellous

compartment, a spherical VOI around the element center with a radius of 2 mm was

defined. For each VOI, bone volume fraction (BV/TV) and mean intercept length (MIL)

based fabric tensor were determined and assigned to the element, considering only

the region in the cancellous compartment. For elements fully or partly in the cortical

compartment, a cortical volume fraction was defined considering only the region

within the cortical compartment and an identity tensor was specified as the fabric

tensor. As an example, a contour band plot of the calculated bone volume fraction (r)

and a vector plot of the fabric main direction (largest eigen-value after normalization)

for the osteoporotic and healthy femurs are shown in Fig. 2.

Based on the element density r and fabric tensor M, the element compliance

tensor C was calculated using the fabric–elasticity relationship of Zysset and

Curnier (Zysset, 2003; Zysset and Curnier, 1995):
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Fig. 2. Bone morphological parameters; bone volume fraction and main direction (eigen-values normalized to have Tr(M)¼3, where M is the fabric tensor) for healthy

(left) and osteoporotic (right) femurs.

Table 1
Constants used in the Zysset–Curnier relationship.

e0 (GPa)] n0 G0 (GPa) k l

22.5 0.3 8.65 1.914 1
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e0, n0, G0 are elastic constants, mi the normalized eigen-values and Mi the

dyadic product of the eigenvectors of fabric tensor M:

M¼
X3

i ¼ 1

miMi ¼
X3

i ¼ 1

miðmi �miÞ, TrðMÞ ¼ 3, ð2Þ

In the case of modeling isotropic material properties, the fabric tensor is

simply replaced by the identity tensor. The elastic constants (Table 1) were scaled

to be in agreement with Young’s moduli used for micro-FE analyses (Verhulp et al.,

2006). For elements that cover both compartments, a mixture rule was used to

calculate a stiffness tensor that is a mixture of the cancellous and cortical stiffness

tensor, using the element cancellous and cortical bone fraction as scaling factors.

2.4. Homogenization of micro-FE results

As mentioned earlier, micro-FE results obtained for the same femurs (Verhulp

et al., 2008) were taken as the gold standard. Using the same meshes as used for the

continuum model, an averaging technique was used to homogenize the bone tissue

stress tensors over the element volumes. This averaging should be performed over

the total element volume, Vtot, comprising the voxels that represent both bone tissue
and those that represent the marrow region. In the micro-FE model, however, stress

and strain values were calculated only for the voxels representing bone tissue Vtissue.

Since the stresses in the other voxels (representing bone marrow) are zero anyway,

the homogenized stress scould be calculated by integrating the tissue stress tensors

s over the bone tissue volume only

s¼ 1

Vtot

Z
sdVtot ¼

1

Vtot

Z
s dVtissue ð3Þ

After calculating the homogenized stress tensor for each element, the homo-

genized principal stress values were calculated.
2.5. Boundary conditions

The boundary conditions applied were chosen to be the same in the

continuum and micro-FE model and represented loading conditions typically

applied in an experimental setting to simulate a fall-on-the-side situation (Cheng

et al., 1997; Courtney et al., 1994, 1995). In this setup the angle between the

vertical and the shaft axis was 101 and the femur was internally rotated by 151.

The load magnitude was 1 kN, distributed over the femoral head. The individual

nodal forces were directed toward the center of the femoral head to represent

loading conditions expected when a frictionless cartilage layer is present. The

nodes on the surface of the trochanter, in a 5 mm layer perpendicular to the

resultant hip force, were fixed in the vertical direction and the nodes on the distal

end of the femur were constrained in the horizontal direction (Fig. 3).
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2.6. Comparison of results

Contour and vector plots of the largest principal stress component were made

for a qualitative comparison of the stress distribution obtained from the con-

tinuum model and from the homogenized micro-FE results. For a quantitative

comparison, the homogenized micro-FE principal stress values for elements in the
Fig. 3. Applied boundary conditions to FE models; the arrow represent resultant

hip force.

Fig. 4. Micro-FE results and homogenized micro-FE results; maximum principal stress (

distributions in the continuum-FE models for the healthy (top) and osteoporotic (botto
neck region were correlated with those of the continuum models and a Pearson’s

linear correlation coefficient was calculated based on an element by element value

comparison. Only elements in the femoral neck were selected since this is the

most critical region for loading condition as applied here and since it is sufficiently

far away from the regions where boundary conditions were applied, thus avoiding

errors due to the close proximity of external constraints.

Furthermore, the whole bone stiffness was calculated and compared for all

models. Since in all models the applied load was distributed over a large number

of nodes, it was not possible to define a meaningful deflection of the bone when

loaded. Instead, an energy-equivalent deflection d was calculated from the energy

equation:

1

2
Fd¼

Z
U dV ð4Þ

with F the applied force and U the strain energy density. Using this deflection d,

the stiffness k then was calculated as

k¼
F

d
¼

F2

2
R

U dV
ð5Þ
3. Results

Contour plots of the homogenized principal stress values are
shown in Fig. 4. These plots serve as the gold standard relative to
which the results of the continuum FE will be compared. Contour
plots of the largest principal stress component in the healthy and
osteoporotic femur as obtained from the continuum models are
depicted in Fig. 5. It can be seen that the stress distributions
obtained from the continuum models are both qualitatively and
quantitatively very similar to those obtained from the micro-FE
results. The most notable difference is the somewhat higher stress
values at the distal side of the femoral neck and the proximal side
of the femoral head in the continuum models. The latter is likely
MPa) distributions in the micro-FE models (Verhulp et al., 2008) and homogenized

m) femurs.



Fig. 5. Top: maximal principal stress (MPa) distribution for the healthy femur, calculated using the orthotropic continuum model (left) and the isotropic continuum model

(right). Bottom: the same for the osteoporotic femur.
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an effect of the applied boundary conditions. For the isotropic
models a comparison of the stress distribution in the continuum
FE and homogenized micro-FE models resulted in a correlation
coefficient r¼0.798 for the healthy model and r¼0.773 for the
osteoporotic model. For the orthotropic models, a correlation
coefficient r¼0.831 was found for the healthy femur and r¼0.830
for the osteoporotic one (Fig. 6).

Contour plots of the strain energy density distribution (Fig. 7)
showed very similar results as the maximum principal stress plots.
In particular for the osteoporotic femur, the orthotropic model
better compared to the micro-FE results than the isotropic model.

To get a better insight in the differences between the results of
continuum and homogenized micro-FE stresses, we also plotted
the relative error in the maximum principal stress calculation
obtained from the isotropic model when compared to the gold
standard for the healthy femur versus the bone volume fraction
(Fig. 8). From this result, it is clear that the larger errors are found
in regions with low bone volume fraction.

In order to visualize the correspondence in the directions of
the maximum principal stress component, vector plots of the
maximum principal stress are shown in Fig. 9. The vector plots
from continuum models compare qualitatively well with the ones
from micro-FE models. In particular for the osteoporotic femur it
can be seen that at some locations (notably Ward’s triangle) the
agreement is less favorable.

The results for the whole bone stiffness are shown in Table 2;
from these results it can be seen that the continuum models tend
to overestimate the stiffness, in particular when using isotropic
material properties. For the healthy femur, this overestimation
was 10% for the orthotropic model and 14% for the isotropic
model. For the osteoporotic femur, the same overestimation was
found for orthotropic model, but for the isotropic model the
stiffness was overestimated by as much as 52%.
4. Discussion

The goal of this study was to demonstrate a new approach to
evaluate the accuracy of the stress distributions calculated from
continuum FE models that implement different material models.
The material model used in this study was either an isotropic one
based on the density distribution or an orthotropic one, based on
bone density and fabric using a relationship proposed in the
literature (Zysset and Curnier, 1995). This new approach uses
homogenized micro-FE stress distributions as the gold standard
relative to which the results of the continuum models can be
compared.

We found good agreement between results obtained from the
homogenized micro-FE models and those of the continuum
models. This indicates that bone density, or a combination of
bone density and fabric, in combination with the material models
chosen well represents the mechanical properties of cancellous
bone. For the two bones investigated here, the orthotropic models
provided slightly more accurate results than isotropic models. These
results are in accordance with earlier studies where orthotropic
models improved the predictions of vertebral body apparent stiffness



Fig. 6. Regression of micro-FE and continuum-FE predicted results based on isotropic and orthotropic material properties for the healthy (upper panels) and osteoporotic

(bottom panels) bone (r: linear correlation coefficient and cc: concordance correlation coefficient).

Fig. 7. Strain energy density (SED) plots for homogenized micro-FE (left), orthotropic (middle) and isotropic (right) models within healthy femur (top) and osteoporotic

femur (bottom).
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with respect to isotropic models (Pahr and Zysset, 2009). The
osteoporotic bone benefited more from an orthotropic material
description than the healthy bone model. However, a thorough
comparison between the accuracy of isotropic and orthotropic models
is not possible due the limitations in the number of the samples used
in this study.

In the present study we could use micro-CT images of the
bones for the measurement of the element fabric tensor. When
only clinical CT data is available, this is not possible since the
resolution of such images is not good enough to resolve the
trabecular architecture required to measure fabric. Nevertheless,
methods have been developed to obtain at least some indication
of the bone fabric even from clinical CT images (Tabor, 2007).
Recently developed high resolution flat-panel CT scanning tech-
niques might provide a resolution that is good enough to
determine fabric of trabecular bone even in-vivo (Bredella et al.,
2008; Cheung et al., 2009; Gupta et al., 2006; Walsh et al., 2010).
Although in most of these studies only bone in the peripheral
Fig. 8. Relative error in the maximum principal stress magnitude in the isotropic

model for the healthy femur.

Fig. 9. Maximum principal stress vector plots for micro-FE (left), orthotropic (middle

(bottom).
skeleton was considered, applications to the spine and femur
have been reported as well (Mulder et al., 2012). In case no
patient-specific information about the fabric can be obtained,
using a generalized fabric direction might be a possible solution
as well.

The present study focused on the accuracy of only the stress
distribution. The accuracy of the strain distribution was not
investigated. The reason for this is that for the homogenization
of the micro-FE calculated strains the strains in the marrow
region also are needed. Unlike for the stresses, the strains in
these regions are not zero and Eq. (3) cannot be used for strains.
Since the marrow region was not meshed in the micro-FE models,
it was not possible to apply a proper homogenization of the
micro-FE calculated strains. It is possible though, to compare the
strains for the continuum models that implement isotropic and
anisotropic material properties. Fig. 10 shows the maximum
principal strain distribution for all continuum models. It can be
seen that the strain distributions in the isotropic and orthotropic
models are very similar, although strains in the isotropic model
are slightly higher than those in the anisotropic model.

Although in this study we have compared the whole-bone
stiffness, we did not compare the elastic properties of the
elements in the continuum models to the elastic stiffness of the
corresponding regions in the micro-FE models. The reason for this
is twofold. First, most bone morphology–stiffness relationships
have already been well validated by comparing elastic properties
calculated from the morphology parameters with those measured
in experiments or from micro-FE analyses of the same specimens
(Matsuura et al., 2008; Rincon-Kohli and Zysset, 2009). Second,
although it would be theoretically possible to calculate the
) and isotropic (right) models for the healthy femur (top) and osteoporotic one

Table 2
Stiffness calculated for the different models (N/mm).

Micro-FE Orthotropic Isotropic

Healthy 3865.967 4263.505 (þ10%) 4406.971 (þ14%)

Osteoporotic 2643.209 2915.581 (þ10%) 4025.246 (þ52%)



Fig. 10. Top: maximal principal strain [-] distribution for the healthy femur, calculated from the orthotropic continuum model (left) and the isotropic continuum model

(right). Bottom: the same for the osteoporotic femur.
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stiffness of the spherical region around each element based on
micro-FE results, this would be extremely expensive and was out-
of the scope of the present study.

Some other limitations of this study must be mentioned as well.
First, we analyzed only two femurs and only two material models.
However, our main goal was to test the new approach, and the
results provided here should be considered merely as a demonstra-
tion. Second, we applied only one set of loading conditions. We
selected loading conditions representing a fall because we expected
that stresses and strains during non-physiological loading conditions
might be more sensitive to the material model used than those
during physiological loading conditions. The reason for this expecta-
tion is that, if bone is adapted to physiological loading conditions,
the highest stress and strain values are expected in the principal
anisotropic direction. In that case the stiffness in only that principal
direction is of importance, whereas the stiffness in the transversal
directions hardly plays a role. During non-physiological loading,
however, high stresses and strains are expected also in transversal
directions.

It should be noted as well that the exact way, in which the bone
density and fabric (from which the elastic properties in the
continuum model were derived) are determined, could also have
an effect on the results. In the present study we defined a spherical
volume with a radius of 2 mm around the element centroid for
calculation of the element density and fabric. This choice was based
on the notion that, in order to define valid continuum level proper-
ties, measurements over a length scale on the order of 4 mm are
required (Harrigan et al., 1988). Setting this radius to a larger or
smaller value will slightly change the results, and thus the material
properties in the continuum model. To test the sensitivity of the
results to the radius size, we performed a pilot study in which the
radius was varied from 2 mm to 8 mm. The results showed that the
actual chosen size has a very small effect on the calculated bone
volume fraction, fabric tensor and degree of anisotropy. Our choice
of the fabric tensor used (MIL) was based on the fact that it was the
tensor that was used when the orthotropic material models were
defined. Selecting other fabric tensors, however, will likely not affect
the results much (Kabel et al., 1999a).

In conclusion, we have demonstrated that a micro-FE stress/
strain homogenization procedure can be used as a reference
relative to which results of continuum models can be compared
to evaluate the accuracy of the models. We propose that this
approach will enable a more relevant and accurate validation of
different material models than experimental methods used so far.
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