28 research outputs found

    Aberrant Receptor-Mediated Endocytosis of Schistosoma mansoni Glycoproteins on Host Lipoproteins

    Get PDF
    BACKGROUND: Bilharzia is one of the major parasitic infections affecting the public health and socioeconomic circumstances in (sub) tropical areas. Its causative agents are schistosomes. Since these worms remain in their host for decades, they have developed mechanisms to evade or resist the immune system. Like several other parasites, their surface membranes are coated with a protective layer of glycoproteins that are anchored by a lipid modification. METHODS AND FINDINGS: We studied the release of glycosyl-phosphatidylinositol (GPI)-anchored proteins of S. mansoni and found them in the circulation associated with host lipoprotein particles. Host cells endocytosed schistosomal GPI-anchored proteins via their lipoprotein receptor pathway, resulting in disturbed lysosome morphology. In patients suffering from chronic schistosomiasis, antibodies attacked the parasite GPI-anchored glycoproteins that were associated with the patients' own lipoprotein particles. These immunocomplexes were endocytosed by cells carrying an immunoglobulin-Fc receptor, leading to clearance of lipoproteins by the immune system. As a consequence, neutral lipids accumulated in neutrophils of infected hamsters and in human neutrophils incubated with patient serum, and this accumulation was associated with apoptosis and reduced neutrophil viability. Also, Trypanosoma brucei, the parasite that causes sleeping sickness, released its major GPI-anchored glycoprotein VSG221 on lipoprotein particles, demonstrating that this process is generalizable to other pathogens/parasites. CONCLUSIONS: Transfer of parasite antigens to host cells via host lipoproteins disrupts lipid homeostasis in immune cells, promotes neutrophil apoptosis, may result in aberrant antigen presentation in host cells, and thus cause an inefficient immune response against the pathogen

    Multiple Statistical Analysis Techniques Corroborate Intratumor Heterogeneity in Imaging Mass Spectrometry Datasets of Myxofibrosarcoma

    Get PDF
    MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data. Several reports have indicated that imaging MS-based molecular histology may be able to complement established histological and histochemical techniques by distinguishing between pathologies with overlapping/identical morphologies and revealing biomolecular intratumor heterogeneity. A data analysis pipeline that identifies regions of imaging MS datasets with correlated mass spectrometry profiles could lead to the development of novel methods for improved diagnosis (differentiating subgroups within distinct histological groups) and annotating the spatio-chemical makeup of tumors. Here it is demonstrated that highlighting the regions within imaging MS datasets whose mass spectrometry profiles were found to be correlated by five independent multivariate methods provides a consistently accurate summary of the spatio-chemical heterogeneity. The corroboration provided by using multiple multivariate methods, efficiently applied in an automated routine, provides assurance that the identified regions are indeed characterized by distinct mass spectrometry profiles, a crucial requirement for its development as a complementary histological tool. When simultaneously applied to imaging MS datasets from multiple patient samples of intermediate-grade myxofibrosarcoma, a heterogeneous soft tissue sarcoma, nodules with mass spectrometry profiles found to be distinct by five different multivariate methods were detected within morphologically identical regions of all patient tissue samples. To aid the further development of imaging MS based molecular histology as a complementary histological tool the Matlab code of the agreement analysis, instructions and a reduced dataset are included as supporting information

    Calpain 3 Is a Rapid-Action, Unidirectional Proteolytic Switch Central to Muscle Remodeling

    Get PDF
    Calpain 3 (CAPN3) is a cysteine protease that when mutated causes Limb Girdle Muscular Dystrophy 2A. It is thereby the only described Calpain family member that genetically causes a disease. Due to its inherent instability little is known of its substrates or its mechanism of activity and pathogenicity. In this investigation we define a primary sequence motif underlying CAPN3 substrate cleavage. This motif can transform non-related proteins into substrates, and identifies >300 new putative CAPN3 targets. Bioinformatic analyses of these targets demonstrate a critical role in muscle cytoskeletal remodeling and identify novel CAPN3 functions. Among the new CAPN3 substrates are three E3 SUMO ligases of the Protein Inhibitor of Activated Stats (PIAS) family. CAPN3 can cleave PIAS proteins and negatively regulates PIAS3 sumoylase activity. Consequently, SUMO2 is deregulated in patient muscle tissue. Our study thus uncovers unexpected crosstalk between CAPN3 proteolysis and protein sumoylation, with strong implications for muscle remodeling

    Imaging Mass Spectrometry Data Reduction: Automated Feature Identification and Extraction

    No full text
    Imaging MS now enables the parallel analysis of hundreds of biomolecules, spanning multiple molecular classes, which allows tissues to be described by their molecular content and distribution. When combined with advanced data analysis routines, tissues can be analyzed and classified based solely on their molecular content. Such molecular histology techniques have been used to distinguish regions with differential molecular signatures that could not be distinguished using established histologic tools. However, its potential to provide an independent, complementary analysis of clinical tissues has been limited by the very large file sizes and large number of discrete variables associated with imaging MS experiments. Here we demonstrate data reduction tools, based on automated feature identification and extraction, for peptide, protein, and lipid imaging MS, using multiple imaging MS technologies, that reduce data loads and the number of variables by >100×, and that highlight highly-localized features that can be missed using standard data analysis strategies. It is then demonstrated how these capabilities enable multivariate analysis on large imaging MS datasets spanning multiple tissues

    Generation of heavy-chain-only antibodies in mice

    Get PDF
    We have generated transgenic mice containing hybrid llama/human antibody loci that contain two llama variable regions and the human D, J, and Cμ and/or Cγ constant regions. Such loci rearrange productively and rescue B cell development efficiently without LC rearrangement. Heavy-chain-only antibodies (HCAb) are expressed at high levels, provided that the CH1 domain is deleted from the constant regions. HCAb production does not require an IgM stage for effective pre-B cell signaling. Antigen-specific heavy-chain-only IgM or IgGs are produced upon immunization. The IgG is dimeric, whereas IgM is multimeric. The chimeric HCAb loci are subject to allelic exclusion, but several copies of the transgenic locus can be rearranged and expressed successfully on the same allele in the same cell. Such cells are not subject to negative selection. The mice produce a full antibody repertoire and provide a previously undescribed avenue to produce specific human HCAb in the future

    Specific Antibody Responses to Three Schistosome-Related Carbohydrate Structures in Recently Exposed Immigrants and Established Residents in an Area of Schistosoma mansoni Endemicity

    No full text
    By the use of surface plasmon resonance spectroscopy, immunoglobulin G (IgG) subclass and IgM antibodies against three schistosome-derived carbohydrate structures, FLDN (Fucα1-3GalNAcβ1-4GlcNAcβ1-3Galα1), LDN-DF [GalNAcβ1-4(Fucα1-2Fucα1-3)GlcNAcβ1], and LDNF [GalNAcβ1-4(Fucα1-3)GlcNAcβ1-3Galα1], were measured in 184 previously unexposed Kenyan immigrants who moved into the Masongaleni area, where Schistosoma mansoni is endemic. They were sampled within their first year of exposure and again 2 years later. A cohort selected out of the original residents of the area, who had been exposed for many years, served as controls. Associations with responses to S. mansoni worm, egg (SEA), and cercarial (CERC) antigens were examined. In addition, we measured responses to keyhole limpet hemocyanin, a glycoprotein which carries glycan epitopes that are also expressed by schistosomes. Specific IgG1 responses were most pronounced against FLDN and LDN-DF and strongly associated with those previously measured to SEA and CERC. Similarly to previously published age profiles of IgG1 and IgG2 responses to SEA, levels of IgG1 against LDN-DF decreased with age. In contrast, specific IgM responses against the three schistosome-derived carbohydrate structures were most marked against LDNF. Our results indicate that, of the three glycan structures tested, the acute response against schistosome glycoconjugate antigens in young children is mainly directed against the LDN-DF epitope. The response to LDN-DF in older individuals and the responses to the two other epitopes were similar in the two cohorts, suggesting that these antigens are recognized in the early stages of infection and that the immune response persists. The biological significance of these observations needs further elucidation
    corecore