3,165 research outputs found

    Tropical tree cover in a heterogeneous environment: a reaction-diffusion model

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this record.Observed bimodal tree cover distribution sat particular environmental conditions and theoretical models indicate that some areas in the tropics can be in either of the alternative stable vegetation states forest or savanna.However,when including spatial interaction in nonspatial differential equation models of a bistable quantity, only the state with the lowest potential energy remains stable. Our recent reaction-diffusion model of Amazonian tree cover confirmed this and was able to reproduce the observed spatial distribution of forest versus savanna satisfactorily when forced by heterogeneous environmental and anthropogenic variables, even though bistability was underestimated. These conclusions were solely based on simulation results for one set of parameters. Here, we perform ananalytical and numerical analysis of the model. We derive the Maxwell point (MP) of the homogeneous reaction-diffusion equation without savanna trees as a function of rainfall and human impact and show that the front between forest and nonforest settles at this point as long as savanna tree cover near the front remains sufficiently low. For parameters resulting in higher savanna tree cover near the front, we also find irregular forest-savanna cycles and woodland-savanna bistability, which can both explain the remaining observed bimodality.EPSR

    Synthesis and complexes of a constrained-cavity Schiff-base dipyrrin macrocycle

    Get PDF

    Factors that influence shelterbelt retention and removal in prairie agriculture as identified by Saskatchewan producers

    Get PDF
    Non-Peer ReviewedThe role of shelterbelts in prairie agriculture is changing. Traditionally, shelterbelts were promoted and adopted for soil stabilization and protection of farm infrastructure, equipment, and livestock from harsh weather elements; however, advances in production technology, larger scale operations, and the removal of a subsidy (distribution of free seedlings) have changed the context in which shelterbelts are currently being maintained, planted, or removed. This research identified the factors that are influencing producer’s management decisions related to retention and adoption of shelterbelts in the early 21st century in Saskatchewan, Canada. In the summer of 2013, surveys were conducted with producers from throughout the province of Saskatchewan (and several from Alberta). From the surveys, costs, benefits, and factors influencing producer’s management decisions, related to shelterbelts in the farm operations, were identified. Survey results show that 40% of the produces removed shelterbelts from their operations. Reasons for such decisions included: high labor requirements, difficulty in the operation of large equipment, and loss of land for production. Those who did not remove shelterbelts recognized their non-economic values more than those who removed them. Shelterbelts have the potential to play a major role in climate change mitigation by sequestering significant amounts of atmospheric CO2 into the soil and as biomass carbon in aboveground and belowground biomass of planted shelterbelt trees or shrubs within the agricultural landscape, both presently and in the future. As a result, understanding the context in which producers are making decisions related to this agroforestry practice will be important from a policy perspective

    Conformal invariance in the long-range Ising model

    Get PDF
    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest

    Radiative Shock-Induced Collapse of Intergalactic Clouds

    Full text link
    Accumulating observational evidence for a number of radio galaxies suggests an association between their jets and regions of active star formation. The standard picture is that shocks generated by the jet propagate through an inhomogeneous medium and trigger the collapse of overdense clouds, which then become active star-forming regions. In this contribution, we report on recent hydrodynamic simulations of radiative shock-cloud interactions using two different cooling models: an equilibrium cooling-curve model assuming solar metallicities and a non-equilibrium chemistry model appropriate for primordial gas clouds. We consider a range of initial cloud densities and shock speeds in order to quantify the role of cooling in the evolution. Our results indicate that for moderate cloud densities (>1 cm^{-3}) and shock Mach numbers (<20), cooling processes can be highly efficient and result in more than 50% of the initial cloud mass cooling to below 100 K. We also use our results to estimate the final H_2 mass fraction for the simulations that use the non-equilibrium chemistry package. This is an important measurement, since H_2 is the dominant coolant for a primordial gas cloud. We find peak H_2 mass fractions of >0.01 and total H_2 mass fractions of >10^{-5} for the cloud gas. Finally, we compare our results with the observations of jet-induced star formation in ``Minkowski's Object.'' We conclude that its morphology, star formation rate (~ 0.3M_solar/yr) and stellar mass (~ 1.2 x 10^7 M_solar) can be explained by the interaction of a 90,000 km/s jet with an ensemble of moderately dense (~ 10 cm^{-3}), warm (10^4 K) intergalactic clouds in the vicinity of its associated radio galaxy at the center of the galaxy cluster.Comment: 30 pages, 7 figures, submitted to Astrophysical Journa

    Validation of Observed Bedload Transport Pathways Using Morphodynamic Modeling

    Get PDF
    Phenomena related to braiding, including local scour and fill, channel bar development, migration and avulsion, make numerical morphodynamic modeling of braided rivers challenging. This paper investigates the performance of a Delft3D model, in a 2D depth-averaged formulation, to simulate the morphodynamics of an anabranch of the Rees River (New Zealand). Model performance is evaluated using data from field surveys collected on the falling limb of a major high flow, and using several sediment transport formulas. Initial model results suggest that there is generally good agreement between observed and modeled bed levels. However, some discrepancies in the bed level estimations were noticed, leading to bed level, water depth and water velocity estimation errors

    Role of the Meso Substituent in Defining the Reduction of Uranyl Dipyrrin Complexes

    Get PDF
    The uranyl complex UVIO2Cl(LMes) of the redox-active, acyclic dipyrrin–diimine anion LMes– [HLMes = 1,9-di-tert-butyl-imine-5-(mesityl)dipyrrin] is reported, and its redox property is explored and compared with that of the previously reported UVIO2Cl(LF) [HLF = 1,9-di-tert-butyl-imine-5-(pentafluorophenyl)dipyrrin] to understand the influence of the meso substituent. Cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory studies show that the alteration from an electron-withdrawing meso substituent to an electron-donating meso substituent on the dipyrrin ligand significantly modifies the stability of the products formed after reduction. For UVIO2Cl(LMes), the formation of a diamond-shaped, oxo-bridged uranyl(V) dimer, [UVO2(LMes)]2 is seen, whereas in contrast, for UVIO2Cl(LF), only ligand reduction occurs. Computational modeling of these reactions shows that while ligand reduction followed by chloride dissociation occurs in both cases, ligand-to-metal electron transfer is favorable for UVIO2Cl(LMes) only, which subsequently facilitates uranyl(V) dimerization

    Chemo-dynamical evolution of Globular Cluster Systems

    Full text link
    We studied the relation between the ratio of rotational velocity to velocity dispersion and the metallicity (/\sigma_{v}-metallicity relation) of globular cluster systems (GCS) of disk galaxies by comparing the relation predicted from simple chemo-dynamical models for the formation and evolution of disk galaxies with the observed kinematical and chemical properties of their GCSs. We conclude that proto disk galaxies underwent a slow initial collapse that was followed by a rapid contraction and derive that the ratio of the initial collapse time scale to the active star formation time scale is \sim 6 for our Galaxy and \sim 15 for M31. The fundamental formation process of disk galaxies was simulated based on simple chemo-dynamical models assuming the conservation of their angular momentum. We suggest that there is a typical universal pattern in the /\sigma_{v}-metallicity relation of the GCS of disk galaxies. This picture is supported by the observed properties of GCSs in the Galaxy and in M31. This relation would deviate from the universal pattern, however, if large-scale merging events took major role in chemo-dynamical evolution of galaxies and will reflect the epoch of such merging events. We discuss the properties of the GCS of M81 and suggest the presence of past major merging event.Comment: 25 pages, 8 figures, Accepted for publication in the Astrophysical Journa
    • 

    corecore