3,165 research outputs found
Tropical tree cover in a heterogeneous environment: a reaction-diffusion model
This is the final version. Available from Public Library of Science via the DOI in this record.Observed bimodal tree cover distribution sat particular environmental conditions and theoretical models indicate that some areas in the tropics can be in either of the alternative stable vegetation states forest or savanna.However,when including spatial interaction in nonspatial differential equation models of a bistable quantity, only the state with the lowest potential energy remains stable. Our recent reaction-diffusion model of Amazonian tree cover confirmed this and was able to reproduce the observed spatial distribution of forest versus savanna satisfactorily when forced by heterogeneous environmental and anthropogenic variables, even though bistability was underestimated. These conclusions were solely based on simulation results for one set of parameters. Here, we perform ananalytical and numerical analysis of the model. We derive the Maxwell point (MP) of the homogeneous reaction-diffusion equation without savanna trees as a function of rainfall and human impact and show that the front between forest and nonforest settles at this point as long as savanna tree cover near the front remains sufficiently low. For parameters resulting in higher savanna tree cover near the front, we also find irregular forest-savanna cycles and woodland-savanna bistability, which can both explain the remaining observed bimodality.EPSR
Recommended from our members
A review of the introduced smooth-billed ani Crotophaga ani in GalĂĄpagos
The smooth-billed ani (Crotophaga ani) is a widespread introduced bird species in the biologically important archipelago of GalĂĄpagos. Many scientists and local people consider it to be a damaging invasive, and it is possible that it impacts native species and ecosystems via multiple mechanisms. However, evidence for this is largely anecdotal and research on smooth-billed anis in GalĂĄpagos is limited. Despite this, there have been repeated attempts to control or eradicate the population over the past few decades, all without long-term success. These attempts continue, but no official plan of action regarding this species currently exists.This review brings together all available information on smooth-billed anis in GalĂĄpagos. We use both published and unpublished research to answer the following questions:1.What is known about the history of the smooth-billed anis' introduction to GalĂĄpagos?2.What are the possible impacts of smooth-billed anis in GalĂĄpagos?3.What attempts have been undertaken to control or eradicate smooth-billed anis in GalĂĄpagos and what were their outcomes?In answering these questions, we highlight numerous knowledge gaps, in both the current understanding of the impacts of this introduced species and the effectiveness of potential control or eradication methods. We find an urgent need for further research before considered, resource-efficient decisions can be made regarding smooth-billed anis in GalĂĄpagos
Factors that influence shelterbelt retention and removal in prairie agriculture as identified by Saskatchewan producers
Non-Peer ReviewedThe role of shelterbelts in prairie agriculture is changing. Traditionally, shelterbelts were promoted and adopted for soil stabilization and protection of farm infrastructure, equipment, and livestock from harsh weather elements; however, advances in production technology, larger scale operations, and the removal of a subsidy (distribution of free seedlings) have changed the context in which shelterbelts are currently being maintained, planted, or removed. This research identified the factors that are influencing producerâs management decisions related to retention and adoption of shelterbelts in the early 21st century in Saskatchewan, Canada. In the summer of 2013, surveys were conducted with producers from throughout the province of Saskatchewan (and several from Alberta). From the surveys, costs, benefits, and factors influencing producerâs management decisions, related to shelterbelts in the farm operations, were identified. Survey results show that 40% of the produces removed shelterbelts from their operations. Reasons for such decisions included: high labor requirements, difficulty in the operation of large equipment, and loss of land for production. Those who did not remove shelterbelts recognized their non-economic values more than those who removed them. Shelterbelts have the potential to play a major role in climate change mitigation by sequestering significant amounts of atmospheric CO2 into the soil and as biomass carbon in aboveground and belowground biomass of planted shelterbelt trees or shrubs within the agricultural landscape, both presently and in the future. As a result, understanding the context in which producers are making decisions related to this agroforestry practice will be important from a policy perspective
Conformal invariance in the long-range Ising model
We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest
Radiative Shock-Induced Collapse of Intergalactic Clouds
Accumulating observational evidence for a number of radio galaxies suggests
an association between their jets and regions of active star formation. The
standard picture is that shocks generated by the jet propagate through an
inhomogeneous medium and trigger the collapse of overdense clouds, which then
become active star-forming regions. In this contribution, we report on recent
hydrodynamic simulations of radiative shock-cloud interactions using two
different cooling models: an equilibrium cooling-curve model assuming solar
metallicities and a non-equilibrium chemistry model appropriate for primordial
gas clouds. We consider a range of initial cloud densities and shock speeds in
order to quantify the role of cooling in the evolution. Our results indicate
that for moderate cloud densities (>1 cm^{-3}) and shock Mach numbers (<20),
cooling processes can be highly efficient and result in more than 50% of the
initial cloud mass cooling to below 100 K. We also use our results to estimate
the final H_2 mass fraction for the simulations that use the non-equilibrium
chemistry package. This is an important measurement, since H_2 is the dominant
coolant for a primordial gas cloud. We find peak H_2 mass fractions of >0.01
and total H_2 mass fractions of >10^{-5} for the cloud gas. Finally, we compare
our results with the observations of jet-induced star formation in
``Minkowski's Object.'' We conclude that its morphology, star formation rate (~
0.3M_solar/yr) and stellar mass (~ 1.2 x 10^7 M_solar) can be explained by the
interaction of a 90,000 km/s jet with an ensemble of moderately dense (~ 10
cm^{-3}), warm (10^4 K) intergalactic clouds in the vicinity of its associated
radio galaxy at the center of the galaxy cluster.Comment: 30 pages, 7 figures, submitted to Astrophysical Journa
Validation of Observed Bedload Transport Pathways Using Morphodynamic Modeling
Phenomena related to braiding, including local scour and fill, channel bar development, migration
and avulsion, make numerical morphodynamic modeling of braided rivers challenging. This paper investigates
the performance of a Delft3D model, in a 2D depth-averaged formulation, to simulate the
morphodynamics of an anabranch of the Rees River (New Zealand). Model performance is evaluated using
data from field surveys collected on the falling limb of a major high flow, and using several sediment
transport formulas. Initial model results suggest that there is generally good agreement between observed and
modeled bed levels. However, some discrepancies in the bed level estimations were noticed, leading to bed
level, water depth and water velocity estimation errors
Role of the Meso Substituent in Defining the Reduction of Uranyl Dipyrrin Complexes
The uranyl complex UVIO2Cl(LMes) of the redox-active, acyclic dipyrrinâdiimine anion LMesâ [HLMes = 1,9-di-tert-butyl-imine-5-(mesityl)dipyrrin] is reported, and its redox property is explored and compared with that of the previously reported UVIO2Cl(LF) [HLF = 1,9-di-tert-butyl-imine-5-(pentafluorophenyl)dipyrrin] to understand the influence of the meso substituent. Cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory studies show that the alteration from an electron-withdrawing meso substituent to an electron-donating meso substituent on the dipyrrin ligand significantly modifies the stability of the products formed after reduction. For UVIO2Cl(LMes), the formation of a diamond-shaped, oxo-bridged uranyl(V) dimer, [UVO2(LMes)]2 is seen, whereas in contrast, for UVIO2Cl(LF), only ligand reduction occurs. Computational modeling of these reactions shows that while ligand reduction followed by chloride dissociation occurs in both cases, ligand-to-metal electron transfer is favorable for UVIO2Cl(LMes) only, which subsequently facilitates uranyl(V) dimerization
Shelterbelts: a row of trees or the next best thing to mitigating GHGs on prairie landscapes
Non-Peer Reviewe
Chemo-dynamical evolution of Globular Cluster Systems
We studied the relation between the ratio of rotational velocity to velocity
dispersion and the metallicity (/\sigma_{v}-metallicity relation) of
globular cluster systems (GCS) of disk galaxies by comparing the relation
predicted from simple chemo-dynamical models for the formation and evolution of
disk galaxies with the observed kinematical and chemical properties of their
GCSs. We conclude that proto disk galaxies underwent a slow initial collapse
that was followed by a rapid contraction and derive that the ratio of the
initial collapse time scale to the active star formation time scale is \sim 6
for our Galaxy and \sim 15 for M31. The fundamental formation process of disk
galaxies was simulated based on simple chemo-dynamical models assuming the
conservation of their angular momentum. We suggest that there is a typical
universal pattern in the /\sigma_{v}-metallicity relation of the GCS
of disk galaxies. This picture is supported by the observed properties of GCSs
in the Galaxy and in M31. This relation would deviate from the universal
pattern, however, if large-scale merging events took major role in
chemo-dynamical evolution of galaxies and will reflect the epoch of such
merging events. We discuss the properties of the GCS of M81 and suggest the
presence of past major merging event.Comment: 25 pages, 8 figures, Accepted for publication in the Astrophysical
Journa
- âŠ