54 research outputs found

    The skeletons of free distributive lattices

    Get PDF
    AbstractThe skeletons of free distributive lattices are studied by methods of formal concept analysis; in particular, a specific closure system of sublattices is elaborated to clarify the structure of the skeletons. Up to five generators, the skeletons are completely described

    Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes

    Get PDF
    Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours

    TBX2 is a neuroblastoma core regulatory circuitry component enhancing MYCN/FOXM1 reactivation of DREAM targets

    Get PDF
    Chromosome 17q gains are almost invariably present in high-risk neuroblastoma cases. Here, we perform an integrative epigenomics search for dosage-sensitive transcription factors on 17q marked by H3K27ac defined super-enhancers and identify TBX2 as top candidate gene. We show that TBX2 is a constituent of the recently established core regulatory circuitry in neuroblastoma with features of a cell identity transcription factor, driving proliferation through activation of p21-DREAM repressed FOXM1 target genes. Combined MYCN/TBX2 knockdown enforces cell growth arrest suggesting that TBX2 enhances MYCN sustained activation of FOXM1 targets. Targeting transcriptional addiction by combined CDK7 and BET bromodomain inhibition shows synergistic effects on cell viability with strong repressive effects on CRC gene expression and p53 pathway response as well as several genes implicated in transcriptional regulation. In conclusion, we provide insight into the role of the TBX2 CRC gene in transcriptional dependency of neuroblastoma cells warranting clinical trials using BET and CDK7 inhibitors

    Developmental regulation of the Hox genes during axial morphogenesis in the mouse

    No full text
    The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongatio

    A NOTCH3 transcriptional module induces cell motility in neuroblastoma

    No full text
    Neuroblastoma is a childhood tumor of the peripheral sympathetic nervous system with an often lethal outcome due to metastatic disease. Migration and epithelial-mesenchymal transitions have been implicated in metastasis but they are hardly investigated in neuroblastoma. Cell migration of 16 neuroblastoma cell lines was quantified in Transwell migration assays. Gene expression profiling was used to derive a migration signature, which was applied to classify samples in a neuroblastoma tumor series. Differential expression of transcription factors was analyzed in the subsets. NOTCH3 was prioritized, and inducible transgene expression studies in cell lines were used to establish whether it functions as a master switch for motility. We identified a 36-gene expression signature that predicts cell migration. This signature was used to analyse expression profiles of 88 neuroblastoma tumors and identified a group with distant metastases and a poor prognosis. This group also expressed a known mesenchymal gene signature established in glioblastoma. Neuroblastomas recognized by the motility and mesenchymal signatures strongly expressed genes of the NOTCH pathway. Inducible expression of a NOTCH intracellular (NOTCH3-IC) transgene conferred a highly motile phenotype to neuroblastoma cells. NOTCH3-IC strongly induced expression of motility- and mesenchymal marker genes. Many of these genes were significantly coexpressed with NOTCH3 in neuroblastoma, as well as colon, kidney, ovary, and breast tumor series. The NOTCH3 transcription factor is a master regulator of motility in neuroblastoma. A subset of neuroblastoma with high expression of NOTCH3 and its downstream-regulated genes has mesenchymal characteristics, increased incidence of metastases, and a poor prognosi

    The Cdx4 mutation affects axial development and reveals an essential role of Cdx genes in the ontogenesis of the placental labyrinth in mice

    No full text
    Caudal related homeobox (Cdx) genes have so far been shown to be important for embryonic axial elongation and patterning in several vertebrate species. We have generated a targeted mutation of mouse Cdx4, the third member of this family of transcription factor encoding genes and the last one to be inactivated genetically. Cdx4-null embryos were born healthy and appeared morphologically normal. A subtle contribution of Cdx4 to anteroposterior (AP) vertebral patterning was revealed in Cdx1/Cdx4 and Cdx2/Cdx4 compound mutants. Neither Cdx4-null nor Cdx1/Cdx4 double mutants are impaired in their axial elongation, but a redundant contribution of Cdx4 in this function was unveiled when combined with a Cdx2 mutant allele. In addition, inactivation of Cdx4 combined with heterozygous loss of Cdx2 results in embryonic death around E10.5 and reveals a novel function of Cdx genes in placental ontogenesis. In a subset of Cdx2/Cdx4 compound mutants, the fully grown allantois failed to fuse with the chorion. The remaining majority of these mutants undergo successful chorio-allantois fusion but fail to properly extend their allantoic vascular network into the chorionic ectoderm and do not develop a functional placental labyrinth. We present evidence that Cdx4 plays a crucial role in the ontogenesis of the allantoic component of the placental labyrinth when one Cdx2 allele is inactivated. The axial patterning role of Cdx transcription factors thus extends posteriorly to the epiblast-derived extra-embryonic mesoderm and, consequent upon the evolution of placental mammals, is centrally involved in placental morphogenesis. The relative contribution of Cdx family members in the stepwise ontogenesis of a functional placenta is discussed, with Cdx2 playing an obligatory part, assisted by Cdx4. The possible participation of Cdx1 was not documented but cannot be ruled out until allelic combinations further decreasing Cdx dose have been analyzed. Cdx genes thus operate in a redundant way during placentogenesis, as they do during embryonic axial elongation and patterning, and independently from the previously reported early Cdx2-specific role in the trophectoderm at implantatio

    Spatial self-organized patterning in seagrasses along a depth gradient of an intertidal ecosystem

    Get PDF
    The spatial structure of seagrass landscapes is typically ascribed to the direct influence of physical factors such as hydrodynamics, light, and sediment transport. We studied regularly interspaced banded patterns, formed by elongated patches of seagrass, in a small-scale intertidal ecosystem. We investigated (1) whether the observed spatial patterns may arise from feedback interactions between seagrass and its abiotic environment and (2) whether changes in abiotic conditions may lead to predictable changes in these spatial patterns. Field measurements, experiments, and a spatially explicit computer model identified a ‘‘scale-dependent feedback’’ (a mechanism for spatial self-organization) as a possible cause for the banded patterns. Increased protection from uprooting by improved anchoring with increasing seagrass density caused a local positive feedback. Sediment erosion around seagrass shoots increased with distance through the seagrass bands, hence causing a long-range negative feedback. Measurements across the depth gradient of the intertidal, together with model simulations, demonstrated that seagrass cover and mean patch size were predictably influenced by additional external stress caused by light limitation and desiccation. Thus, our study provides direct empirical evidence for a consistent response of spatial self-organized patterns to changing abiotic conditions, suggesting a potential use for self-organized spatial patterns as stress indicators in ecosystems.

    Ecosystem Engineering by Seagrasses Interacts with Grazing to Shape an Intertidal Landscape

    Get PDF
    Self-facilitation through ecosystem engineering (i.e., organism modification of the abiotic environment) and consumer-resource interactions are both major determinants of spatial patchiness in ecosystems. However, interactive effects of these two mechanisms on spatial complexity have not been extensively studied. We investigated the mechanisms underlying a spatial mosaic of low-tide exposed hummocks and waterlogged hollows on an intertidal mudflat in the Wadden Sea dominated by the seagrass Zostera noltii. A combination of field measurements, an experiment and a spatially explicit model indicated that the mosaic resulted from localized sediment accretion by seagrass followed by selective waterfowl grazing. Hollows were bare in winter, but were rapidly colonized by seagrass during the growth season. Colonized hollows were heavily grazed by brent geese and widgeon in autumn, converting these patches to a bare state again and disrupting sediment accretion by seagrass. In contrast, hummocks were covered by seagrass throughout the year and were rarely grazed, most likely because the waterfowl were not able to employ their preferred but water requiring feeding strategy (‘dabbling’) here. Our study exemplifies that interactions between ecosystem engineering by a foundation species (seagrass) and consumption (waterfowl grazing) can increase spatial complexity at the landscape level.
    • 

    corecore