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Abstract 

Wille, R., The skeletons of free distributive lattices, Discrete Mathematics 88 (1991) 309-320. 

The skeletons of free distributive lattices are studied by methods of formal concept analysis; in 

particular, a specific closure system of sublattices is elaborated to clarify the structure of the 

skeletons. Up to five generators, the skeletons are completely described. 

1. Introduction 

The knowledge about the structure of free distributive lattices is very limited; 
in the finite case, even the number of elements is not known for more than seven 
generators [2]. In [7] an approach is described in which the structural analysis of 
finite free distributive lattices is based on the notion of the skeleton of a finite 
lattice. The main concern of this paper is to clarify the structure of the skeletons 
of free distributive lattices via distinguished sublattices. The skeletons are not 
only valuable for analysing the structure of free distributive lattices, they are also 
interesting by themselves because the rth skeleton of the free bounded distribu- 
tive lattice with IZ generators is isomorphic to the lattice of all maximal convex 
r-subsets in the power set of an n-element set (see [7]). As in [7], this paper also 
uses methods of formal concept analysis which have been developed in [4-6,8]. 
In Section 2, free completely distributive lattices and their skeletons are 
represented as concept lattices. These representations are used in Section 3 to 
study a closure system of distinguished sublattices of the skeletons. In Section 4 
the results of Section 2 and 3 are applied to describe the skeletons of the free 
bounded distributive lattice generated by five elements; as a particular corollary 
we obtain that the number of maximal antichains in the power set of a 5element 
set is 376. 
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2. Free completely distributive lattices and their skeletons 

The free completely distributive lattice FCD(S) generated by the set S is, up to 
isomorphism, characterized by the property that every map (Y from S into a 
completely distributive complete lattice L can be extended to a complete 
homomorphism LY from FCD(S) into L. In [l] one can find a representation of 
FCD(S) for an arbitrary set S. Here, this representation is modified to obtain a 
representation of FCD(S) and its skeletons as concept lattices. 

First we have to introduce the notion of a skeleton for complete lattices. For 
this we recall that a complete tolerance relation 0 of a complete lattice L is a 
binary relation on L which is reflexive, symmetric and compatible with the 
operations A and V, i.e., @_Y~ for tE T imply (/~T-G)@(/\~~TYJ and 

(VtsT%)@(VtcTYr). 
The blocks of 0 are the maximal intervals B of L satisfying By for all x, y E B. 

The set L/O of all blocks of 0 becomes a complete lattice by defining 

A complete tolerance relation is called glued if for every two of its blocks B1 < B2 
there are blocks B3 and B4 with B1 C B3 s B4 s B2 and B, rl B4 # $3. The smallest 
glued complete tolerance relation of L is, if it exists, denoted by C (L) and the 
complete lattice S(L) := L/C (L) is called the skeleton of L [5]. This construction 
may be iterated as follows: S,(L) := L and S,(L) := S(S,_,(L)) for r = 1, 2, 3, . . . ; 

S,(L) is called the rth skeleton of L. 
Next we define specific relations on the power set ‘@B(S) of a set S. For 

X,Y~S,letXAY:~XnY#0and,forr=1,2,3,...,letXC”Y:~JIS\(XU 
Y)]Sr-1; let Ci:= A. With these definitions we can state the representation 

theorem. 

Theorem 1. FCD(S) = @(‘Q(S), ‘$(S), A) and, moreover, S,(FCD(S)) = 

WI.%% rP(O Au Es)- 

Proof. The extents and intents of the context (‘@B(S), p(S), A) are order filters on 
S and, for each order filter 9 on S, the pair (9,s”) is a concept of 
(p(S), p(S), A) where 9# := {Y c S ( S\ Y C$ S} (cf. [6]); this follows from 
~XE~:X~Y=~~~XE~:X~S\Y~~\YYE. Hence @(‘@(S),p(S),A) 
consists of all pairs (%, 9’) for which 9 is an order filter on S (notice that 

P# = 9). B@(S), V(S), A) is completely distributive because 

;?, (% ST) = ( t9T %7 tyT “p> 

and 
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ForpES, let %;:={X~S/~EX}. %‘i’ 1s an order filter on S with ((e,“)” = %$. 

We obtain that the pairs (ce,“, %i) with p E S are concepts which generate 

@(%VS), P(S)> A) as complete lattice because B = UxEsnPcx %e,S for every 
order filter 9 on S. Now, let (1: be a map from {(‘%‘e,“, %‘i) ( p E S} into a 
completely distributive complete lattice L. For (9, 9#) E B(?@(S), q(S), A), we 

define 

Then 

reT XeF, peX 

Dually, we obtain that & is also /\-preserving by using 

Now, we can conclude that the inverse of the bijection is which assigns to each 
p E S the concept ((e,“, %i), extends to a complete homomorphism which is the 
inverse of %,: FCD(S)* @(p(S), ‘@B(S), A); hence i, is an isomorphism. This 
completes the proof of the first assertion. 

Next we prove that A U Cs is a block relation of (@B(S), P(S), A U CT-r), i.e., 
AU cf_l 5 AU cf and, for each X 5 S, XAucs (= {Y c S 1 X(A U Cf)Y}) is an 
extent and an intent of (q(S), @B(S), A U Cf_1), respectively (cf. [5]). Obviously 
A U cf_l c A U cf. For p E S\X we have XAucs~ (X U {p})A”cFml. Let YE S 
with Y 4 XAuc’, i.e.,XnY=0andJS\(XUY)ISr. WechoosepES\(XUY). 
Then (XU{p})nY=0 and IS\(XU{p}UY)ar-1; hence Y$(XU 

{P>) AucF-l. This proves that 

xA”C: = n (x u {p))A”Cs-l 
PES\x 

for X c S; furthermore, SAucs = ‘Q(S). Therefore A U CT is shown to be a block 
relation of (V(S), P(S), ES-r) for r = 1, 2, 3, . . . . 

Now, by Theorem 8 in [5], the block relation A U Cf yields a complete 
tolerance relation 0 of Q@(S), @B(S), A U Cf-r) via the following definition: 

(Qr, i3JO(cS2, S&):6& x B, U 652 x 591 E A U C;; 

furthermore, 

B(‘$(S), P(S), A U %I)/@ = B(@(S), Q(S), A U .Z:). 

If we show that 0 is the smallest glued complete tolerance relation of 
!&q(S), ‘@B(S), A U Cf_r), the second assertion of the theorem is also proved. Let 
X, YsSwithXOY=Oand IS\(XUY)I=r-1. 

Then YAucs-l is maximal in 

(2 
A”C?-I 1 2 E @(q \xA”C?-‘}. 
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Therefore yX v PY covers pY. Since X(A U Cf)Y, it follows that X lies in YAucs 
which is already proven to be an extent of @3(S), V(S), A U C~._J. As YAuCF1 E 
YAucs, the extent E of YX v ,uY is contained in YAucs. Let 2 E %\YAucf-l. Then 
ZAucs has to contain the intent ‘3 of PY because PY is covered by yX v pY. 
Therefore (5 x 29 G A U Es; hence (yX v pY)OpY. Now, if (&, %r) < (a,, QJ 
in ‘@(Q(S), !J3(S), A U Es-J then there are X E a2 and YE 2Q1 with XII Y = 0 
and IS\(X U Y)I = r - 1. Since (yX v pY)@Y we have 

(((G Q) v YX) A PYP(% %) A (YX v PY)). 

Together with 

this proves that 0 is glued. An arbitrary glued complete tolerance relation Y of 

@W-W), rP(S), AU C;-1) contains, by definition, all covering pairs, in particular 
(yX v PY, pY) with X fl Y = 0 and (S\(X U Y)( = I - 1. These pairs generate 0 
by Theorem 8 in [5] because 

(AU Cs)/(Cf_i) = {(X, Y) E B(S)’ ) X O Y #0 and 
lS\(XUY)(=r-1). 

Thus, 0 c Y and therefore 0 is the smallest glued tolerance relation of 
@(‘@B(S), q(S), A U Es-i). This completes the proof. 0 

The connection to the approach in [7] can be described using the following 
relation on p(S): X2, Y:aX =, Y and IX\YI 2r. Then X & Y, i.e., X $Y or 
IX\Yl=zr-1, is equivalent to (s\X)flY#O or ]s\((S\X)UY)Jsr-1. 
Therefore X H S\X and Y H Y describes a context isomorphism from 

(‘$3(S), q(S), &) onto (‘$3(S), P(S), AU Ef); hence, by Theorem 1, we have 

FCD(S) = W@(S), @P(S), $) and, moreover, %(FCD(S)) = W‘@(S), V(S), &). 
In the case of a finite set 5, it is more appropriate to use instead of Cf the 

relation Cf which is defined as follows: XEfY:e]XI + IY] 2 ISI + 1 -r. 
Obviously, A U Cf = A U c s; but cf yields a simpler structure than Cf. For 
describing this, we define V,,(S) := {X c S ( 1x12 k} and C,, := ((0, 1, . . . , n - 

l}, s). The context (‘@B(S), ‘@B(S), Es) with r c s : = (SI has exactly the concepts 

(%,+,-,-k(S), P&)) with k = 0, . . . , s + 1 - r; hence !J#3(S), v(S), Es) = 
Cs+2--r. The pairs (@ 3s+l_-j(S), ~o,j(S)) with j = 1, . . . , s form a distinguished 

chain in g@(S), ‘@B(S), A) w tc is under the isomorphism 2, the image of the h’ h 
chain d1 < * . * < cf, in FCD(S) where 

dj:=A{VXIX~SwithIX(=j} (=V{AY(YzSwith(Yl=s+l-j}). 

For a finite set S, the free completely distributive lattice FCD(S) is also the free 
bounded distributive lattice generated by S and denoted by FBD(S); in particular 
FBD(n):=FBD({e,, . . . , e,}). 
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As an immediate consequence of Theorem 1 we obtain tensorial decomposi- 
tions of FCD(S). Let us recall that the direct product of contexts I-6, : = (G,, M,, Z,) 
(t E T) is defined by 

where 

the definition of the tensor product of complete lattices yields that B(II,,, W,) = 

@t,Tg(Kt) (see [f5,91). If a set S is the disjoint union of sets S, (t E T), we can 
easily deduce the context isomorphy (q(S), q(s), A) = n&T (‘$(S,), ‘@(St), A). 
Thus, we have derived the following theorem (cf. [3]). 

Theorem 2. Zf s = UIET s,, then FCD(S) = @‘rcT FCD(S,); in particular 
FCD(S) = BseS FCD({s}) where FCD({s}) = C3. 

Corollary 3. FBD(m + n) = FBD(m) @ FBD(n). 

3. Sublattices of the skeletons 

In this section we study sublattices of the skeletons of free distributive lattices 
with the aim to understand the skeletons as a union of distinguished sublattices. 
In [8] it is shown how to recognize complete sublattices of a concept lattice via its 
underlying context; for that a closed relation of a context (G, M, I) is defined to 
be a subset J of G x M such that every concept of (G, M, J) is already a concept 
of (G, M, Z). A complete sublattice G of B(G, M, I) yields the closed relation 
C(&) := lJ (A x B ) (A, B) E 6) of (G, M, Z) by the following proposition from 

P31. 

Proposition 4. C is a bijection from the set of all complete sublattices of 
@(G, M, I) onto the set of all closed relations of (G, M, I); in particular, 
C-‘(J) = Q(G, M, J) f or each closed relation J of (G, M, I). 

For the application of Proposition 4 we generalise the relation A on the power 
set ‘$3(S) using an arbitrary subset T of S: 

obviously, A = AS. For 65, 9J2 5 p(S) and T G S such that X E @ implies X n 
T E @ and YE 2J2 implies T II YE 2J2, it can be shown by Proposition 4 that 
g(@, 2.72, AT) is a complete sublattice of g(a), !?JZ, A). The main argument in the 
proof of this assertion also occurs in the following proposition which directly 
contributes to the theme of this paper. 
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Proposition 5. For a finite set S and for a subset T of S, !IJ(p(S), @s(S), AT U Es) 

is a 0-l-s&lattice of’B(P(S), v(S), A U Es). 

Proof. Let (6, 93) E @3(‘@(S), ‘$0(S), AT U Es). Obviously, 9 c GA@. Let 2 E 
EAues. Suppose 2 $ %I. Then there exists an X E E with X O T n Z =O and 
IXI+IZIcI.SI-r. Let UESsuchthatXOTsU, UOZ=0, and ]Ul=lXl. To 
show that U must be an element of (5, we choose an arbitrary element Y of %. 

Casel: IYl?=]sl+l-r-1X1. 
Then]U]+IYI>IXI+lS(+l-r-IX(=IS]+l-r;henceUEfY. 
Cuse 2: IY( < ISI - r - 1x1, i.e., JX( + (Y( Ss -r. 

As X E E and YE 5D, it follows that XATY and so UATY because X O T c U. 

Case 1 and 2 yield U E Q. But this contradicts Z E GAuzs, U fl Z = 0, and 
JUJ + lZl c JSJ - r. Therefore 59 = @Aucs and symmetrically G = 5DAucs; hence 
(6, 9) E @(‘@p(S), p(S), A U ES). This together with Proposition 4 proves that 

WW), ‘$3(S), Ar U Es) is a complete sublattice of Q(!@(S), p(S), A U Es) which 
for finite lattices is the same as a 0-1-sublattice. 0 

In a context the intersection of closed relations need not to be a closed relation 
again so that it is not clear how to describe in general the intersection of 
sublattices via an underlying context. In the case of the sublattices 
‘@(‘@p(S), Q(S), A U Es), the intersections have a natural description by closed 
relations which is given in the following proposition. 

Proposition 6. Let T and U be subsets of a finite set S. Then 8(‘@(S), p(S), AT U 

ES) n B@(S), ‘@B(S), Au u .?) = ‘B(‘@3(S)7 ‘%Wh hu u ES). 

Proof. The concept lattice of (Q(S), ‘@p(S), ATouU Es) is contained in each 
concept lattice of the contexts (@p(S), p(S), AT U Es) and (‘@p(S), p(S), ALI U Es) 
and so also in their intersection. Now, let (G, 59) E %3(‘@(S), @B(S), A, U Es) fl 
%J(‘$(S), 5$3(S), Au U Es). Suppose that there are X E (5 and Z E % with X fl T fl 

UOZ=0andIX]+IZIGlIS]-r. LetuschooseVsSwithXnTcV, VnUrl 

Z=0, andlV(=IXI. ForYE9wehaveXOTOY#OorJXI+IYI3ISI+l-r 
and so V n T n Y #0 or [VI + IYI L IS( + 1 - r; hence V E 6. But, because of 
Z E %.I, V n U rl Z = 0, and IV1 + lZ1 s (SI -r, this contradicts (G, 59) E 
Q@(S), ‘@B(S), ALI U Es). Therefore (Q, 9) is a concept of (q(S), ‘p(S), ATnu U 
Es) which proves the assertion of the proposition. 0 

By Proposition 6, the distinguished sublattices g(‘$(S), Q(S), AT U Es) form a 
closure system on the underlying set of the lattice B@(S), ‘q(S), A U Es) which, 
up to isomorphism, is the rth skeleton of the free distributive lattice generated by 
S. The structure of these sublattices is clarified by the next proposition (for the 
definition of the tensorial operation @ see [6]). 
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Proposition 7. For finite sets TcS wifh s:=ISI, t:=IT(, and s-taral, 

EW(0 WS), Ar U .?) is isomorphic fo the sublattice of FBD(t) @ Cs_,+2_-r 

generated by el @ 0, . . . , e,OOandfhechain{l\ik_odiO(k-i)Ik=l,...,s- 

t - r}. 

Proof. Obviously, the context g(@(S), q(S), AT U Es) is isomorphic to the 

context K, := (P(T) x $(S\ T), ‘$3(T) X @(S\ T), I) with (X1, X,)Z(Y,, YJ :e 

XiAY, or [X1( + IY,l + IX21 + lYzl 3s + 1 - r. The question arises whether I is a 

closed relation of the direct product context (q(T), q(T), A) x (@(S\ T), $(S\ 

T), c:‘T). Since this need not to be true, we extend I to a closed relation J of the 

direct product context by defining (X1, X,)J(Y,, Y2) :e(X,, X,)Z(Y,, YJ or 

JX,lSs--t+l-r or lY,)Ss-t+l- r. Before proving the closeness of J, we 

show that !2J(lK,) = @(K,) for K,:=@(T) X S$(S\T), ‘$3(T) X ‘$(S\T), .I). Let 

(X,, X,) E P(T) x ?VS\ T) with (X21 2 s - t + 1 - r. Then (X,, X2)’ = v(T) x 

‘Q(S \ T) so that (X,, X,) can be deleted from K, without changing the structure 

of the concept lattice. If we can prove this also for K,, we obtain the desired 

isomorphy. We may assume that IX,1 GS - r - IX21 because otherwise 

(X,, X2)’ = @3(T) x @(S\ T). Let 3 be the set of all (Z,, 2,) with X1 z Z, c T, 

Z2 c X2, (Z,l = IX11 + 1X2) -s + t + r, and JZ,I = s - t - r. Because of 

IX,I+IX,I-s++++rs-r-lX,J+(X21-s+t+r=t, 

$j is not empty. If (Xi, X,)Z(Y,, Y,) then, for (Z,, Z,) E ,3, X,AY, would imply 

Z,AY, and (X,1 + lY1l + [X2( + IY213,s + 1 -r would imply JZ,I + lYtl + lZ21 + 

lY,l~ s + 1 - r; hence (Z,, Z,)Z(Y,, Y,) and so (X,, X2)’ G (Z,, ZJ’. If 1(X1, 

X,)Z(Y,, Y,) then X1 II Y1 = 0 and (X,1 + IYII + IX21 + lY2[ ss -r; therefore, be- 

cause of 

there exists a (Z,, Z,) in ,3 with Z1 fl Y1 = 0 and so l(Z,, Z,)Z(Y,, Y2). This 

proves that 

Thus, (X,, X,) can also be deleted from K6, and we obtain 

so that we can perform our structural analysis with the concept lattice of the 

context K,. 

Let (X,, X,)J(Y,, 6) in KJ. If X1 fl Y1 = 0 and lXsl, I YJ 5 s - t - r then 

(X,1 + IYil + IX21 + IY,l a.s + 1 -r and, because of IX11 + IY,l it, IX21 + lY21 2 

s - t + 1 - r; hence (X,, X2) V(Y,, Y,) in the direct product context, i.e., J c V. 
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Now, let (a, %) E !?j(lK,) and let (Yi, Yz) E Ev. We want to show that (Yi, Y,) E 
GKJ=9. This is true if (Y,(3s-t+l-r; so we assume that lY2(<s-f--r. Let 
(Xi, X,) E Q with X1 n Y, = 0. Suppose t - IY1l a (X1( + IXzl. Then there exists a 
Zi c T with X, G Z,, Zi fl Y, = 0 and (Z1l = 1X11 + IX,]. It follows that (Z,, 0) E 
9’ = 0 what contradicts l(Z,, O)V(Y,, YJ. Thus, we have t - IY,l < IX,] + 1X2). 

This guarantees the existence of a Zz G X2 with IT\Y,( + lZ21 = IX11 + IXz]. Again 
we conclude that (T\Y,, Z,) E SD’= K (T\Yl, Z,)V(Yl, Y,) implies lZ,l + lYz] 2 
s - t + 1 - r and so we obtain 

IX4 + IFI + l&l + l&l = IT\Y,l + Ir,l + 14 + I&l 
at-lY1(+(Y1(+s-t+l-r=s+l-r. 

This proves (Y,, Y,) E a’ = 5Q; hence &‘= 59 and symmetrically 59 ‘= B. 
Therefore (a, 9) is a concept of (p(T) X @(S\ T), @S(T) X ‘@(S\ T), V) so that J 
is a closed relation of this context. Since FBD(T) = @(v(T), ‘@P(T), A) and 
Cs_,+Z_-r = !7j(‘$(S \ T), ‘$(S \ T), Es’r), the concept lattice of K, is isomorphic to 
a sublattice of FBD(t) @ Cs-1+2--r by Proposition 4 and Theorem 1 in [6]. By 
Section 2, we have irp = (E:, a:) for all p E T and i&j = (‘$+t_j( T), @aj( T)) for 
j=o, 1,. . .) t; furthermore 

(@;I E;)@(% V(S\T)) = (6;~ @(S\T), Q,‘+V(S\T)), 

and 

,& (‘@a,-,(T), VU,(T)) 0 (V*,-,+i-,-k+j(s\T), @Psk-j(S\T)) 

=,bO ((V+(T) X Qp,,-j(S\T))‘p V=j(T) X ‘$ak-j(S\T)) 

= (,k Vat-j(T) X @as-,+I--r--k+j(S\ T), ,k ‘@*j(T) X B,rt-j(S\T))* 
Since the closed relation J is the union of the product sets 

(EF x @(S \ T)) x (EF x @(S \ T)) for p E T, 

(P(T) x @a,-,+I-,(S\T)) x (‘p(T) x %(s\T), 

MT) x W\T)) x (@B(T) x %-,+I-,WT)), 
and 

(,k @*,-j(T) X ‘@as-t+i-r-*+I(S\T)) X (,k (P,&T) X V*k-j(s\T)) 

fork=l,...,s-t-r, 

again by Proposition 4, @(wJ) is generated by the concepts (GF, Ga @ (0, 
!@(S\T)) with p E T and 

,& (‘$a,-j(T), %*j(T)) @ (‘@as-r+i-r-k+j(S\ T), 9Bsk-j(S\T))* 
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Now the isomorphisms above yield the assertion of the proposition. 0 

Corollary 8. For s - t = r, Q@(S), ‘@B(S), AT U Es) = FBD(t). 

4. Skeletons as unions of free distributive sublattices 

In this final section we discuss which skeletons of the free bounded distributive 
lattices FBD(n) can be determined by the distinguished sublattices described in 
Section 3. For a finite set S we define a bicover of degree r with bound k to be a 
pair (ZE, 9) with X, g E Q(S) such that, for each R E S with IRI = r, there are 
XReE and YR~g with XRflYRsR and IX,l+lY,l<k and, for XEJ and 
YE 2), X fl Y #0 or 1x1 + JYl > k. Let bit,(S) (=: bic,(lSl)) be the smallest 
number k for which S admits a bicover of degree r with bound k. 

Proposition 9. For a non-empty finite set S and for r = 1, 2, 3, . . . , ISI, 

@MS), ‘@B(S), A U Es) is the union of all !?J(V(S), ‘Q(S), AT U Es) with ITI = 

ISI - r if and only if ISI - r -C bit,(S). 

Proof. Let ISI -r 2 bit,(S). Then S admits a bicover (& 2)) of degree r with 
bound ISI - r because a bicover of degree r with bound k can always be extended 
to a bicover of degree r with bound k + 1. Since X(A U cs)Y for all X E X and 
YE g, there is a concept (G, 9) of (‘$3(S), @B(S), A U Es) with Z E Q and 9 E $5 
There does not exist a T := S\R with JR1 = r and (Q, 9) E @23(@(S), p(S), ATc 

Es) because, for X, E x E G and YR E 2) E 9 with X, fl Y, c R, 

X,nTflY,=0 and IX,l+lYRl~lSI-r. 

Thus, W@(S), q(S), AU c;) is not the union of all @(p(S), ‘@B(S), A, U Es) 
with (TI = ISI - r. Let us, conversely, start with this statement as assumption. 
Then there is a concept (a, 3) of @(‘$3(S), V(S), A U c,) which is not a concept 
of B(!#(S), @o(S), A, U Es) if ITI = JSI - r. Hence, for each R c S with IRJ = r, 

there exist XR~6 and Y,E%) with X,n(S\R)nY,=O and IXRl+lYRI~ 
ISI -r. Thus, (Q, 9) is a bicover of degree r with bound ISI - r and so 
JSI - r 2 bit,(S). 0 

From Theorem 1 we can deduce that each generator ei of FBD(n) is contained 
in a unique block [e& of C (FBD(n)) and, moreover, [e& is contained in a 
unique block [e,],+i of C (S,(FBD(n)) for r = 1, 2, 3, . . . . By Corollary 8, each 
(n - r)-element subset of {[e,],, . . . , [e,],} generate in S,(FBD(n)) a sublattice 
isomorphic to FBD(n -r). When these sublattices cover S,(FBD(n)), this 
describes the following corollary of Proposition 9. 
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Corollary 10. S,(FBD(n)) = U { ([ei,],, . . . , [e,_J,) 11 s iI < * * * < i,_, s n} if and 
only if n - r < bit,(n); additionally, we have ([eJ,, . . . , [e,_,lr> = FBD(n - r). 

Since {{1,2}, (3, 4}, {5,6}} and {{1,3,5}, {2,4,6}} form a bicover of degree 
1 with bound 5 for the set (1, . . . ,6}, the skeleton Sr(FBD(6)) is not the union of 
six copies of FBD(5) by Corollary 10. But, for n < 5, the skeletons of FBD(n) 
can be constructed as unions of free distributive sublattices because n - r < 
bit,(n) for 1 G r < n c 5 which can be easily verified. How the results of Section 2 
and 3 can be applied to describe these skeletons, this we demonstrate only in the 
case n = 5 (line diagrams of the skeletons S,(FBD(4)) can be found in [7]). 

Let S := (1, 2, 3, 4, 5); then Sr(FBD(5)) = B(@(S), V(S), A U Es) by Theorem 

1. WW), V(S), A u Es) is, by Proposition 9, the union of the five sublattices 

W@(S)> V(S), ATU Es) with ITI = 4. By Corollary 8, these sublattices are 
isomorphic copies of FBD(4), a line diagram of which can be seen in [7]. By 
Proposition 5 and 6, T ~@(‘@(S), Q(S), AT, CT) describes a n-preserving map 
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Fig. 2. 

from ‘@3(S) onto a closure system on @(‘$3(S), ‘$(S), AU Es) consisting of 
0-1-sublattices. These sublattices can be determined via Proposition 7; for 

ITI = 3, W@(S), WS), AT u .%) is shown in Fig. 1 by a line diagram in which the 
black circles indicate a sublattice with IT] = 2 (the cases ITI = 1 and IT] = 0 can 
also be read from the diagram). Thus, it becomes clear how to glue five copies of 
FDB(4) together to obtain the skeleton Sr(FBD(5)). By the inclusion-exclusion- 
formula, we get (S,(FBD(S))I = 5.168 - 10.69 + 10.28 - 5.12 + 6 = 376 which is 
also the number of maximal antichains in ‘$({l, 2, 3, 4, 5)) (cf. [7]). The 
skeletons S,(FBD(S)) for 2 s r c 5 are shown in Fig. 2. 
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