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Abstract
Wille, R., The skeletons of free distributive lattices, Discrete Mathematics 88 (1991) 309-320.

The skeletons of free distributive lattices are studied by methods of formal concept analysis; in
particular, a specific closure system of sublattices is elaborated to clarify the structure of the
skeletons. Up to five generators, the skeletons are completely described.

1. Introduction

The knowledge about the structure of free distributive lattices is very limited;
in the finite case, even the number of elements is not known for more than seven
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of free distributive lattices via distinguished sublattices. The skeletons are not
only valuable for analysing the structure of free distributive lattices, they are also
interesting by themselves because the rth skeleton of the free bounded distribu-
tive lattice with n generators is isomorphic to the lattice of all maximal convex
r-subsets in the power set of an n-element set (see [7]). As in [7], this paper also
uses methods of formal concept analysis which have been developed in [4-6, 8].
In Section 2, free completely distributive lattices and their skeletons are
represented as concept lattices. These representations are used in Section 3 to
study a closure system of distinguished sublattices of the skeietons. In Section 4

the results of Section 2 and 3 are applied to describe the skeletons of the free
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we obtain that the number of maximal antichains in the power set of a 5-element
set is 376.
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The free completely distributive lattice FCD(S) generated by the set S is, up to
isomorphism, characterized by the property that every map « from S into a
completely distributive complete lattice L can be extended to a complete

TN £ O

homomorphism « from FCD(S) into L. In {1} one can find a representation of
FCD(S) for an arbitrary set S. Here, this representation is modified to obtain a

ranmracantatinn of TN CY and ite ckealatang ag concant lattinag
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First we have to introduce the notion of a skeleton for complete lattices. For
this we recall that a complete tolerance relation © of a complete lattice L is a

binary relation on L which is reflexive, symmetric and compatible with the
operations A\ and \/, i.e., x®y, for teT imply (N\,crx.)O(/\icry.) and
(\/teTxt)@(\/teTyt)'

The blocks of © are the maximal intervals B of L satisfying x@y for all x, y € B.
The set L/© of all blocks of @ becomes a complete lattice by defining
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A complete tolerance relation is called glued if for every two of its blocks B, < B,
there are blocks B; and B, with B, < B, =< B,< B, and B, N B,#@. The smallest
glued complete tolerance relation of L is, if it exists, denoted by ¥ (L) and the
complete lattice S(L):= L/¥ (L) is called the skeleton of L [5]. This construction
may be iterated as follows: So(L) := L and S,(L) := S(S,_i(L)) forr=1,2,3,...;
S.(L) is called the rth skeleton of L.

Next we define specific relations on the power set PB(S) of a set S. For

v v_ ¢ VAV .o VY Lk el £ 1 7% 1 1at VOS V. 1C\/YV 1

A, I CO, let XAY:©XNY -r-xlauu WOrr=1,4,5,..., AL, I <=FZPD\Aauv
Y)|sr—1; let 15 := A. With these definitions we can state the representation
t..enfprn.
Mhancame 1 BFONC) = SRONRIC)Y RISy AN and moreover C IO Y ==
ancwviviu Le LI'NAI\WIJ = ANNPWIJ, WP\ ) 43 Wivie, Trcover, A \L NI\ )
N
B(B(S), B(S), AU LY).

Proof. The extents and intents of the context (B(S), B(S), A) are order filters on

¢ and. for each order filter % on S, the wnair (G" 6'#\ is a concent of
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(B(S), B(S), A) where F*#:={Yc=S|S\Y¢ F)} (cf. [6]); this follows from
IXeF XNY=023XeF: X cS\YSS\YeZF Hence B(R(S), B(S), A)
consists of all pairs (%, F*) for which & is an order filter on S (notice that
F** = F). B(B(S), B(S), A) is completely distributive because

A& FH=(N% U

teT teT
and

V(% 7=(U% NF ) (cf. [4]).
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ForpeSs, let €5:={XcS|peX}. € isan order filter on S with (€5)* = €5.
We obtain that the pairs (%63, 65) with peS are concepts which generate
BEB(S), B(S), A) as complete lattice because F =Jxcs( ex €, for every
order filter % on S. Now, let a be a map from {(€3, €5)|peS} into a
completely distributive complete lattice L. For (%, %) e B(B(S), B(S), A), we
define

MF, F)=V N a6, 6).

XeF peX

&V (% F)=a(UF N F) =V VN a6 €)=\ &, 7).

teT teT teT Xe% peX

Dually, we obtain that & is also /\-preserving by using

MF F)= N N\ a6, €)= N V a(bx €)=\ \ «%;, €).
XeF peX oell # XeF Ye%* pey

Now, we can conclude that the inverse of the bijection tg which assigns to each

p €S the concept (€5, €5), extends to a complete homomorphism which is the

inverse of i5:FCD(S)— B(P(S), B(S), A); hence iy is an isomorphism. This

completes the proof of the first assertion.

Next we prove that AU Y7 is a block relation of (B(S), B(S), AUXS)), i.e.,
AUZLY , c AUY; and, for each X =8, X2%" (={Y S| X(AUZY)) is an
extent and an intent of (B(S), B(S), AU X;_,), respectively (cf. [5]). Obviously
AUYS  c AUXS For peS\X we have X2U2 (X U{p})4“%*1, Let Y S
with Y ¢ X4“Z7 je., XNY =@ and |S\(X U Y)| =r. We choose p € S\(X U Y).
Then (XU{p})NY=@ and |S\(XU{p}UY)=r—1; hence Y¢(XU
{p})AYZ*1 This proves that

XAT= () (XU{p)T
PES\X

for X < §; furthermore, $3°%% = B(S). Therefore AU Y? is shown to be a block
relation of (B(S), B(S), XF_ ) forr=1,2,3,....

Now, by Theorem 8 in [5], the block relation AU Y’ yields a complete
tolerance relation © of B(B(S), BV(S), AU L?_,) via the following definition:

(€, DDO(C,, Dy): ¢, XxDUE XD, cAULS;
furthermore,

B(B(S), B(S), AUL?)/©=B(B(S), B(S), AUL)).

If we show that @ is the smallest glued complete tolerance relation of
B(B(S), B(S), AU X)), the second assertion of the theorem is also proved. Let
X, YcSwithXNY=0@and [S\(XUY)|=r—1.

Then Y2YZ%1 js maximal in

{ZAV%-1 | Z e B(S)\ X 49T},
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efore v ¥ v uY covers 1Y, Since X(AU VYNV it foll
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which is already proven to be an extent of ((5), EIS(S) AUYS ). As YAVZ&-i ¢
Y4YZ? the extent € of yX v uY is contained in Y2YZ7 Let Z € (iS\ YAYZ*1 Then
ZAYZ’ has to contain the intent D of uY because uY is covered by yX v uY.
Therefore € X D c AU LF; hence (yX v uY)OuY. Now, if (€, D,) < (€,, D,)
in B(BR(S), B(S), AUX?_)) then there are X €€, and Ye D, with XNY =4
and |[S\(X UY)|=r—1. Since (yX v uY)OuY we have

(€1, By) v vX) A uY)O((€2, D) A (¥X v uY)).

1Q

e-r
<
—

1

Together with

this proves that @ is glued. An arbitrary glued complete tolerance relation ¥ of
BEB(S), B(S), AU LI ,) contains, by definition, ail covering pairs, in particuiar
(yX v uy, uY) with X NY =6 and |S\(X UY)| =r — 1. These pairs generate ©

Th &~ emgan hnanarian

Uy 11ICULC111 O lll lJJ utuLaudsu

(AUTH/I(ZE ) ={(X, Y) e B(S)?’| X N Y #0 and
IS\(XUY)=r-—1)}.

herefore 6 is the gmallest olued tolerance relat
nereiore 18 the smallest gilued tolerance relat

$_). This completes the proof. [

The connection to the approach in [7] can be described using the following
relation on B(S): X o, Y:©X oY and |[X\Y|=r. Then X 2,7, i.e,, X 2Y or
|X\Y|=r—1, is equivalent to (S\X)NY#0 or {S\((S\X)UY)|sr—-1.
Therefore X—S\X and Y+—Y describes a context isomorphism from
(B(S), B(S), $,) onto (B(S), B(S), AUL?); hence, by Theorem 1, we have
FCD(S) = B(R(S), B(S), 3) and, moreover, S,(FCD(S)) = BER(S), B(S), 3.).

In the case of a finite set S, it is more appropriate to use instead of %7 the
relation %5 which is defined as follows: XEISY:&|X|+|Y|=|S|+1—r
Obviously, AUEf;AUif; but LS yields a simpler structure than YS For

IUVIUWSLY 1LAUS @ SHGpItI SuullulT oG re 201

describing this, we define B.(S):={X S | \X|=k} and C,:=({0,1,...,n—
1}, <). The context (B(S), B(S), L) with r <s5:=|S| has exactly the concepts
(Bas+1-r—(8), B=r(S)) with k=0,...,5+1—r; hence B(BR(S), B(S), L) =
C,.2-, The pairs (Pu;1-/(5), B=4S)) with j=1,...,s form a distinguished
chain in B(B(S), B(S), A) which is under the isomorphism i, the image of the
chain d, < - - <d; in FCD(S) where

di:=N\{V X | X cS with |X|=j} =VAANY | Y S with |[Y]=s+1-j}).

For a finite set S, the free completely distributive lattice FCD(S) is also the free
bounded distributive lattice generated by S and denoted by FBD(S); in particular
FBD(n):=FBD({eq, . .., e,}).
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As an immediate consequence of Theorem 1 we obtain tensorial decomposi-
tions of FCD(S). Let us recall that the direct product of contexts IK,:=(G,, M,, I,)
(¢ € T) is defined by

I1 K,:=<H G, M, V)

teT teT teT
where

(gt)teTV(mt)teT:Qat €T: glm,;

the definition of the tensor product of complete lattices yields that B(Il,., KK,) =
®,.r B(K,) (see [6,9]). If a set S is the disjoint union of sets S, (te T), we can
easily deduce the context isomorphy (B(S), B(S), A) =1L (B(S,), B(S,), A).
Thus, we have derived the following theorem (cf. [3]).

Theorem 2. If S=UJ,.;S, then FCD(S)=®,. ,FCD(S,); in particular
FCD(S) = &, s FCD({s}) where FCD({s}) = C,.

Corollary 3. FBD(m + n) =FBD(m) @ FBD(n).

3. Sublattices of the skeletons

In this section we study sublattices of the skeletons of free distributive lattices
with the aim to understand the skeletons as a union of distinguished sublattices.
In [8] it is shown how to recognize complete sublattices of a concept lattice via its
underlying context; for that a closed relation of a context (G, M, I) is defined to
be a subset J of G X M such that every concept of (G, M, J) is already a concept
of (G, M, I). A complete sublattice & of B(G, M, I) yields the closed relation
C(€):=\U(A X B| (A, B)e€) of (G, M, I) by the following proposition from
[8].

Proposition 4. C is a bijection from the set of all complete sublattices of
B(G, M, I) onto the set of all closed relations of (G, M, I); in particular,
CY(J)=B(G, M, J) for each closed relation J of (G, M, I).

For the application of Proposition 4 we generalise the relation A on the power
set B(S) using an arbitrary subset 7 of S:

XAY: ©XNTNY#H

obviously, A= As. For &, I < P(S) and T c S such that X € & implies X N
Te® and YeI implies TNY €N, it can be shown by Proposition 4 that
B(S, IN, Ar) is a complete sublattice of B(®, IN, A). The main argument in the
proof of this assertion also occurs in the following proposition which directly
contributes to the theme of this paper.
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is a 0~1-sublattice of B (% S,

Proof. Let (€, D) e B(B(S), B(S), Ar U LS. Obviously, DG4V, Let Ze
@Auzf_ q"rmgce Z¢D. Then there exists an X e@ with XNTNZ=86 and

2RCAR RAACIE CALNS wilil Qi

IX|+1Z|<|S|-r. Let UcSsuch that XN T < U, UNZ =8, and |U| = |X|. To
show that U must be an element of €, we choose an arbitrary element Y of ®.

Case 1: |Y|=|S|+1—r—|X].

Then |U|+|Y|=|X|+|S|+1—r—|X|=|S|+ 1 —r; hence USS Y.

Case 2: |Y|=|S|—r—|X|, ie., | X|+|Y|<s—r

As X e@€ and Ye D, it follows that XA,Y and so UA;Y because X N T c U.
Case 1 and 2 yield Ue €. But this contradicts Z e €% Unz= #, and
|U| +|Z|<|S| —r. Therefore_ @ €4V and symmetrically € = D4YZ; hence

NN _m1m/n\ mln H : lar A
(€, D) e B(BP(S), B(S), AUZES). This together with Proposition 4 proves that

£5) is a complete sublattice of B(B(S), B(S), AU £5) which

far finite latticec ig fh same as a 0—1-sublattice M
nite jattices 1s the sam a i-subiattice. LUl

again so that it is not clear how to describe in general the intersection of
sublattices via an underlying context. In the case of the sublattices
B(V(S), V(S), AULS), the intersections have a natural description by closed
relations which is given in the following proposition.

Proposition 6. Let T and U be subsets of a finite set S. Then B(B(S), B(S), AU
) NBB(S), B(S), Ay U L) =B(R(S), B(S), ArauvU L)

Proof. The concept lattice of (R(S), B(S), ArnyUZLY) is contained in each
concept lattice of the contexts (R(S), B(S), Ar UZLS) and (B(S), B(S), Ay UL?)
and so also in their intersection. Now, let (€, D) e B(R(S), B(S), Ar UTHN
B(B(S), V(S), Ay UL?). Suppose that there are X e € and Ze D with X NTN
UNZ=@and |X|+|Z[<|S|—r.Letuschoose VcSwith XNTcV,VNUN
Z=0,and |V|=|X|.ForYe®Dwehave XNTNY#Qor|X|+|Y|=|S|+1—-r

e N T A Ae 1T71 L 1V = 1€ 1 — asmnn 17 (£ Miit lannnizco
bUVIIIIII'/"!JUl |V|T|1|/|Q|TL I, llClleVCb Dul, UCLdUDCUl

, VNUNZ=@, and |V|+|Z|<|S|—r, this contradicts (€, D)e
BS), B(S), Ay ut \ Therefore ((S D) is a concept of (R(S) ‘R(V} ArqpU

W 2u L Aiw) Al LU A w ey vv VP, PR
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which proves the assertion of the proposition. O

By Proposition 6, the distinguished sublattices B(R(S), B(S), Ar U Lf) form a
closure system on the underlying set of the lattice B(B(S), R(S), AU LF) which,
up to isomorphism, is the rth skeleton of the free distributive lattice generated by
S. The structure of these sublattices is clarified by the next proposition (for the
definition of the tensorial operation () see [6]).
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Proposition 7. For finite sets TS with s:=|S|, t:=|T|, and s—t=r=1,
BB(S), B(S), A7 ULS) is isomorphic to the sublattice of FBD(t) ® C,_,,2_,
generated by e, DO, . .., ¢, OO0 and the chain {\}.od, @ (k—j) | k=1,...,s—
t—r}.

Proof. Obviously, the context B(R(S), B(S), Ar ULS) is isomorphic to the
context I, :=(B(T) X B(S\T), B(T) X P(S\T), I) with (X, X))I(Y}, Y2):&
X,4Y; or | X |+ Y|+ |X,| +|Ys=s + 1—r. The question arises whether I is a
closed relation of the direct product context (B(7T), B(T), A) x (B(S\T), B(S\
T), £5'7). Since this need not to be true, we extend [ to a closed relation J of the
direct product context by defining (X,, X,)J(Y;, Vo) : (X, Xo)I(Y,, Y5) or
|X2l=s—t+1—ror |Y;|=s—t+1—r Before proving the closeness of J, we
show that B(I,) =B(lK,) for I :=(B(T) x B(S\T), B(T) x B(S\T), J). Let
(X1, X5) € B(T) x B(S\T) with | X, =s—t+1—r. Then (X;, X,) =B(T) x
B(S\T) so that (X, X,) can be deleted from I, without changing the structure
of the concept lattice. If we can prove this also for I§,, we obtain the desired
isomorphy. We may assume that |[X,|<s—r—|X, because otherwise
(X1, Xo)' =B(T) x B(S\T). Let 3 be the set of all (Z,, Z,) with X, cZ, T,
Z,c X,, |Z)| =X+ X, —s+t+7, and |Z,| =s — t — r. Because of

[Xi)+ X5 —s+t+r<ss—r—|X,|+|Xs|—s5+t+r=¢,

3 is not empty. If (X, X,)I(Y,, Y;) then, for (Z,, Z,) e 3, X,AY; would imply
Z,AY, and [ X,|+ Y|+ X, + Y5l =s+1—r would imply |Z,|+|Y;| +|Z,| +
Yol =s+1—r; hence (Z,, Z)I(Y,, Y») and so (X, X,) c(Z,, Z,)". If ~(X,,
X))I(Y,, ) then X, NY, =0 and | X,| +|Y;| + |X5| + |Ys| <s — r; therefore, be-
cause of

Y|+ | X| + X5 —s+t+r<s—r—s+t+r=t¢
there exists a (Z,, Z,) in 3 with Z,NY; =@ and so ~(Z,, Z,)I(Y,, Y,). This

proves that

(le XZ)I =( ﬂ 3 (Zl) ZZ)I‘

LZ2)Es
Thus, (X, X,) can also be deleted from K; and we obtain
B(K,) = B(K,)) = BEB(S), B(S), ArUEY)
so that we can perform our structural analysis with the concept lattice of the

context [K;.

Let (X, Xo)J(Y, Y,) in I§,. If X,NY;=0 and |X,|, |Y2]=<s—t—r then
X\ + 1Y +|X5 +|Ys|=s +1—r and, because of | X |+ |Yi|<t, |X, +|Y,=
s—t+1~r; hence (X, X;)W(Y;, Y>) in the direct product context, i.e., Jc V.



316 R. Wille

Now, let (€, D) e B(K,) and let (Y}, V;) € €”. We want to show that (Y;, V) €
@’ =D. This is true if |Y5]=s —t+ 1~ r; so we assume that |{Y;|<<s —¢—r. Let
(X1, X,) € € with X, NY, =0. Suppose ¢t — |Y}| =|{X,| +|X,|. Then there exists a
Z,cTwith X,cZ,,Z,NY,=0 and |Z,| = | X,| + | X,|. It follows that (Z,, §) €
®’ =€ what contradicts (Z,, §) V(Y;, Y»). Thus, we have ¢ — |Y;| < |X,| + | X,).
This guarantees the existence of a Z, < X, with |T\Y}| + |Z,| = | X,| + | X,|. Again
we conclude that (T\Y,, Z,) e ®’ =C. (T\Y;, Z,)W(Y;, Y,) implies | Z,| + |Y;] =
s —t+1—r and so we obtain

PARINVARIP O RIVARIVAS ARV ARSVAE S

zt—N+inK+s—t+l—-r=s+1—-r.

This proves (Y, ;)e@' =D; hence €= and symmetrically D"=G.
Therefore (€, D) is a concept of (B(T) X B(S\T), B(T) X B(S\T), V) so that J
is a closed relation of this context. Since FBD(T)= B(B(T), VB(T), A) and
Co iz =B(P(S\T), B(S\T), £3'7), the concept lattice of I, is isomorphic to
a sublattice of FBD(¢) ® C,_,,,_, by Proposition 4 and Theorem 1 in [6]. By
Section 2, we have ip = (€], €]) for all p € T and ird; = (P, (T), Bo/(T)) for
j=0,1,...,¢t furthermore

(67, 67) @ (@, BS\T)) = (67 x B(S\T), 67 + B(S\T)),

and

A Bt AT, BoT) © Rmsrroreo S\ T), Besi(S\T)
= A\ (OBoAT) X Bos S\ T, Bl T) X B S\T))

= (;L:JO Eth—j(T) X iBzx—t-{»l—r—lc-(-,'(S\ T), jL=kJ0 EB;,‘(T) X sB?_k__,-(S\ T)) .

Since the closed relation J is the union of the product sets
(CTx PS\T)) x (EF x B(S\T)) forpeT,
(B(T) X Bos—i1-AS\T)) X (B(T) X B(S\T),
(B(T) X BS\T)) X (B(T) X Bmyr1-AS\T)),

and . .
(u Rer AT) X Baemrsor i f(SNT)) X (u ByoAT) X Bus S\ T))
fork=1,...,s—t—r,

again by Proposition 4, B(I,) is generated by the concepts (€7, €7) @ (8,
B(S\T)) with p e T and

S

(s'Bat—j(T): %2}(7‘)) @ (s‘st—t+1—r—k+j(S \ T)’ Ssz—j(S\ T))

j=0

It
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4. Skeletons as unions of free distributive sublattices

In this final section we discuss which skeletons of the free bounded distributive
PR mmem Loy Aok e D S PR LN S | PRS- PR
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Section 3. For a finite set § we define a bicover of degree r with bound k to be a
pair (¥ 9]\ with ¥ mcm(('\ such that, for each R < § with |R| =7, there are

Pait (N, Yauild Jv, SaLAR LIRRN, cavil AN VYALIL A% avi e

XreX and Yz €9 with XRﬁYRgR and |Xg|+|Yz|<k and, for X e X and
Yed, XNY#P or |X|+|Y|>k. Let bic,(S) (=:bic,(|S])) be the smallest
number k for which § admits a bicover of degree r with bound k.

Proposition 9. For a non-empty finite set S and for r=1,2,3,...,|S|,
BB(S), B(S), AU LS) is the union of all B(R(S), B(S), Ay UL?) with |T|=
|S| — r if and only if |S| — r <bic,(S).

Proof. Let |S| —r=bic,(S). Then S admits a bicover (X, ¥)) of degree r with
bound |S| — r because a bicover of degree r with bound & can always be extended
to a bicover of degree r with bound k + 1. Since X (AU Z)Y for all X € ¥ and
Y €9, there is a concept (€, D) of (B(S), B(S), AULS) with Xc € and PeD.

There does not exist a T:=S5\R with |R|=r and (&, D) € BCB(S), B(S), Are
£%) because, for Xz e X c € and Yz €Y= D with Xz N Yz cR,

XeNTNYe=0 and |Xg|+|Yel<|S|—r

Thus, B(B(S), B(S), AUZL]) is not the union of all B(B(S), B(S), A UL
with |T|=|S|—r. Let us, conversely, start with this statement as assumption.

Then there is a concepi (€, D) of B(P(S), V(S), AU £,) which is not a concept
of B(BR(S), B(S), A ULP) if |T|=|S|—r. Hence, for each R < S with [R|=r,

thara avict Y & aond V. QD with Y NIC\PYNV & ond |V | LIV |«

3§ L w) &7 wALOL Ich\D CALENR lR - A yvieil Il.Rl |\U \‘\)' 1 ‘R—,J [« 301N} IARI T I‘RI -
|S| —r. Thus, (€, ®) is a bicover of degree r with bound |S§|—r and so
IS| — r = bic,(S). O

From Theorem 1 we can deduce that each generator e; of F‘BD(;@) is

in a unique block [¢;]; of ¥ (FBD(n)) and, moreover, [e], is contamed in a
unique block [e].., of ¥ (S(FBD(n)) for r=1,2,3,.... By Corollary 8, each
(n — r)-element subset of {[e,],, ..., [e.].} generate in S,(FBD(#n)) a sublattice
isomorphic to FBD(n —r). When these sublattices cover S,(FBD(n)), this
describes the following corollary of Proposition 9.

w
(2]
o]
=
=1
w
=8
=]
o
(=
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Corollary 10. S,(FBD(n))=U{{[e:].,...,[e;, ) 11<i,<---<i,_,=<n} if and
only if n — r <bic,(n); additionally, we have ([e.],, . .., [e;_].) =FBD(n —r).

Since {{1, 2}, {3, 4}, {5, 6}} and {{1, 3, 5}, {2, 4,6}} form a bicover of degree
1 with bound 5 for the set {1, . .., 6}, the skeleton S;(FBD(6)) is not the union of
six copies of FBD(5) by Corollary 10. But, for n <35, the skeletons of FBD(n)
can be constructed as unions of free distributive sublattices because n —r <
bic,(n) for 1 <r=n =35 which can be easily verified. How the results of Section 2
and 3 can be applied to describe these skeletons, this we demonstrate only in the
case n =5 (line diagrams of the skeletons S,(FBD(4)) can be found in [7]).

Let §:={1, 2, 3, 4, 5}; then S;(FBD(5)) = B(R(S), R(S), AU L) by Theorem
1. B(B(S), B(S), AUZLY) is, by Proposition 9, the union of the five sublattices
B(B(S), B(S), A;UELS) with |T|=4. By Corollary 8, these sublattices are
isomorphic copies of FBD(4), a line diagram of which can be seen in [7]. By
Proposition 5 and 6, T — B(B(S), B(S), Ar, £3) describes a N-preserving map

Fig. 1. ([e,);, [e2)s, [e3)s, [ea)s) D (le2)s, [eshh, [eals, [es]y) in S,(FBD(5)).
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Y S» (FBD(5)

% S5 (FBO(5)

53 (FBO(5)) S, (FBD(5)

Fig. 2.

from P(S) onto a closure system on B(R(S), V(S), AUL) consisting of
0-1-sublattices. These sublattices can be determined via Proposition 7; for
|T| =3, B(R(S), B(S), Ar U L}) is shown in Fig. 1 by a line diagram in which the
black circles indicate a sublattice with |7} =2 (the cases |T|=1 and |T|=0 can
also be read from the diagram). Thus, it becomes clear how to glue five copies of
FDB(4) together to obtain the skeleton S;(FBD(5)). By the inclusion-exclusion-
formula, we get |S,(FBD(5))| =5-168 —10-69 + 10-28 — 5-12 + 6 = 376 which is
also the number of maximal antichains in PB({1, 2, 3,4, 5}) (cf. [7]). The
skeletons S,(FBD(5)) for 2=<r <35 are shown in Fig. 2.
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