326 research outputs found
Characterization of radial turbulent fluxes in the Santander linear plasma machine
It is shown that the statistical and correlation properties of the local turbulent flux measured at different radial locations of the cold, weakly ionized plasmas inside the Santander Linear Plasma Machine [Castellanos et al., Plasma Phys. Control. Fusion 47, 2067 (2005)] are consistent with diffusive-like transport dynamics. This is in contrast to the dynamical behavior inferred from similar measurements taken in hotter, fully ionized tokamak and stellarator edge plasmas, in which longterm correlations and other features characteristic of complex, non-diffusive transport dynamics have been reported in the past. These results may shed some light on a recent controversy regarding the possible universality of the dynamics of turbulent transport in magnetized plasma
On the Relationship Between Complex Potentials and Strings of Projection Operators
It is of interest in a variety of contexts, and in particular in the arrival
time problem, to consider the quantum state obtained through unitary evolution
of an initial state regularly interspersed with periodic projections onto the
positive -axis (pulsed measurements). Echanobe, del Campo and Muga have
given a compelling but heuristic argument that the state thus obtained is
approximately equivalent to the state obtained by evolving in the presence of a
certain complex potential of step-function form. In this paper, with the help
of the path decomposition expansion of the associated propagators, we give a
detailed derivation of this approximate equivalence. The propagator for the
complex potential is known so the bulk of the derivation consists of an
approximate evaluation of the propagator for the free particle interspersed
with periodic position projections. This approximate equivalence may be used to
show that to produce significant reflection, the projections must act at time
spacing less than 1/E, where E is the energy scale of the initial state.Comment: 29 pages, LaTex, 4 figures. Substantial revision
On the Design of a Web-Based Decision Support System for Brain Tumour Diagnosis Using Distributed Agents
This paper introduces HealthAgents, an EC-funded research project to improve the classification of brain tumours through multi-agent decision support over a distributed network of local databases or Data Marts. HealthAgents will not only develop new pattern recognition methods for a distributed classification and analysis of in vivo MRS and ex vivo/in vitro HRMAS and DNA data, but also define a method to assess the quality and usability of a new candidate local database containing a set of new cases, based on a compatibility score
Impacts of urbanization on insect herbivory and plant defences in oak trees
Systematic comparisons of species interactions in urban versus rural environments can improve our understanding of shifts in ecological processes due to urbanization. However, such studies are relatively uncommon and the mechanisms driving urbanization effects on species interactions (e.g. between plants and insect herbivores) remain elusive. Here we investigated the effects of urbanization on leaf herbivory by insect chewers and miners associated with the English oak Quercus robur by sampling trees in rural and urban areas throughout most of the latitudinal distribution of this species. In performing these comparisons, we also controlled for the size of the urban areas (18 cities) and gathered data on CO emissions. In addition, we assessed whether urbanization affected leaf chemical defences (phenolic compounds) and nutritional traits (phosphorus and nitrogen), and whether such changes correlated with herbivory levels. Urbanization significantly reduced leaf chewer damage but did not affect leaf miners. In addition, we found that leaves from urban locations had lower levels of chemical defences (condensed and hydrolysable tannins) and higher levels of nutrients (nitrogen and phosphorus) compared to leaves in rural locations. The magnitude of urbanization effects on herbivory and leaf defences was not contingent upon city size. Importantly, while the effects of urbanization on chemical defences were associated with CO emissions, changes in leaf chewer damage were not associated with either leaf traits or CO levels. These results suggest that effects of urbanization on herbivory occur through mechanisms other than changes in the plant traits measured here. Overall, our simultaneous assessment of insect herbivory, plant traits and abiotic correlates advances our understanding of the main drivers of urbanization effects on plant–herbivore interactions.This research was financially supported by a Spanish National Research Grant (AGL2015-70748-R), a Regional Government of Galicia Grant (IN607D 2016/001) and the Ramón y Cajal Research Programme (RYC-2013-13230).Peer reviewe
Functional Connectivity Analyses in Imaging Genetics: Considerations on Methods and Data Interpretation
Functional magnetic resonance imaging (fMRI) can be combined with genotype assessment to identify brain systems that mediate genetic vulnerability to mental disorders (“imaging genetics”). A data analysis approach that is widely applied is “functional connectivity”. In this approach, the temporal correlation between the fMRI signal from a pre-defined brain region (the so-called “seed point”) and other brain voxels is determined. In this technical note, we show how the choice of freely selectable data analysis parameters strongly influences the assessment of the genetic modulation of connectivity features. In our data analysis we exemplarily focus on three methodological parameters: (i) seed voxel selection, (ii) noise reduction algorithms, and (iii) use of additional second level covariates. Our results show that even small variations in the implementation of a functional connectivity analysis can have an impact on the connectivity pattern that is as strong as the potential modulation by genetic allele variants. Some effects of genetic variation can only be found for one specific implementation of the connectivity analysis. A reoccurring difficulty in the field of psychiatric genetics is the non-replication of initially promising findings, partly caused by the small effects of single genes. The replication of imaging genetic results is therefore crucial for the long-term assessment of genetic effects on neural connectivity parameters. For a meaningful comparison of imaging genetics studies however, it is therefore necessary to provide more details on specific methodological parameters (e.g., seed voxel distribution) and to give information how robust effects are across the choice of methodological parameters
A shape memory polymer concrete crack closure system activated by electrical current
YesThe presence of cracks has a negative impact on the durability of concrete by providing paths for
corrosive materials to the embedded steel reinforcement. Cracks in concrete can be closed using
shape memory polymers (SMP) which produce a compressive stress across the crack faces. This
stress has been previously found to enhance the load recovery associated with autogenous selfhealing.
This paper details the experiments undertaken to incorporate SMP tendons containing
polyethylene terephthalate (PET) filaments into reinforced and unreinforced 500 × 100 × 100 mm
structural concrete beam samples. These tendons are activated via an electrical supply using a nickelchrome
resistance wire heating system. The set-up, methodology and results of restrained shrinkage
stress and crack closure experiments are explained. Crack closure of up to 85% in unreinforced
beams and 26%–39% in reinforced beams is measured using crack-mouth opening displacement,
microscope and digital image correlation equipment. Conclusions are made as to the effectiveness of
the system and its potential for application within industry.EPSRC for their funding of the Materials for Life (M4L) project (EP/K026631/1) and Costain Group PLC for industrial sponsorship of the project and autho
Motor skill learning in the middle-aged: limited development of motor chunks and explicit sequence knowledge
The present study examined whether middle-aged participants, like young adults, learn movement patterns by preparing and executing integrated sequence representations (i.e., motor chunks) that eliminate the need for external guidance of individual movements. Twenty-four middle-aged participants (aged 55–62) practiced two fixed key press sequences, one including three and one including six key presses in the discrete sequence production task. Their performance was compared with that of 24 young adults (aged 18–28). In the middle-aged participants motor chunks as well as explicit sequence knowledge appeared to be less developed than in the young adults. This held especially with respect to the unstructured 6-key sequences in which most middle-aged did not develop independence of the key-specific stimuli and learning seems to have been based on associative learning. These results are in line with the notion that sequence learning involves several mechanisms and that aging affects the relative contribution of these mechanisms
A working model of stroke recovery from rehabilitation robotics practitioners
We reviewed some of our initial insights about the process of upper-limb behavioral recovery following stroke. Evidence to date indicates that intensity, task specificity, active engagement, and focusing training on motor coordination are key factors enabling efficacious recovery. On modeling, experience with over 400 stroke patients has suggested a working model of recovery similar to implicit motor learning. Ultimately, we plan to apply these insights in the development of customized training paradigms to enhance recovery
- …