277 research outputs found

    GATA2 haploinsufficient patients lack innate lymphoid cells that arise after hematopoietic cell transplantation.

    Get PDF
    Innate lymphoid cells (ILC) are important barrier tissue immune regulators. They play a pivotal role in early non-specific protection against infiltrating pathogens, regulation of epithelial integrity, suppression of pro-inflammatory immune responses and shaping the intestinal microbiota. GATA2 haploinsufficiency causes an immune disorder that is characterized by bone marrow failure and (near) absence of monocytes, dendritic cells, B cells and natural killer (NK) cells. T cells develop normally, albeit at lower numbers. Here, we describe the absence of ILCs and their progenitors in blood and bone marrow of two patients with GATA2 haploinsufficiency and show that all subsets of ILCs appear after allogeneic hematopoietic stem cell transplantation, irrespective of the preparative conditioning regimen. Our data indicate that GATA2 is involved in the development of hematopoietic precursor cells (HPC) towards the ILC lineage

    Structure-Sensitive Mechanism of Nanographene Failure

    Full text link
    The response of a nanographene sheet to external stresses is considered in terms of a mechanochemical reaction. The quantum chemical realization of the approach is based on a coordinate-of-reaction concept for the purpose of introducing a mechanochemical internal coordinate (MIC) that specifies a deformational mode. The related force of response is calculated as the energy gradient along the MIC, while the atomic configuration is optimized over all of the other coordinates under the MIC constant-pitch elongation. The approach is applied to the benzene molecule and (5, 5) nanographene. A drastic anisotropy in the microscopic behavior of both objects under elongation along a MIC has been observed when the MIC is oriented either along or normally to the C-C bonds chain. Both the anisotropy and high stiffness of the nanographene originate at the response of the benzenoid unit to stress.Comment: 19 pages, 7 figures 1 tabl

    Topological mechanochemistry of graphene

    Full text link
    In view of a formal topology, two common terms, namely, connectivity and adjacency, determine the quality of C-C bonds of sp2 nanocarbons. The feature is the most sensitive point of the inherent topology of the species so that such external action as mechanical deformation should obviously change it and result in particular topological effects. The current paper describes the effects caused by uniaxial tension of a graphene molecule in due course of a mechanochemical reaction. Basing on the molecular theory of graphene, the effects are attributed to both mechanical loading and chemical modification of edge atoms of the molecule. The mechanical behavior is shown to be not only highly anisotropic with respect to the direction of the load application, but greatly dependent on the chemical modification of the molecule edge atoms thus revealing topological character of the graphene deformation.Comment: 9 pages, 10 figures, 1 table. arXiv admin note: text overlap with arXiv:1301.094

    A Novel Role for CD55 in Granulocyte Homeostasis and Anti-Bacterial Host Defense

    Get PDF
    Background: In addition to its complement-regulating activity, CD55 is a ligand of the adhesion class G protein-coupled receptor CD97; however, the relevance of this interaction has remained elusive. We previously showed that mice lacking a functional CD97 gene have increased numbers of granulocytes. Methodology/Results: Here,wedemonstratethatCD55-deficientmicedisplay a comparable phenotype with about two-fold more circulating granulocytes in the blood stream, the marginated pool, and the spleen. This granulocytosis was independent of increased complement activity. Augmented numbers of Gr-1-positive cells in cell cycle in the bone marrow indicated a higher granulopoietic activity in mice lacking either CD55 or CD97. Concomitant with the increase in blood granulocyte numbers, Cd55-/mice challenged with the respiratory pathogen Streptococcus pneumoniae developed less bacteremia and died later after infection. Conclusions: Collectively, these data suggest that complement-independent interaction of CD55 with CD97 is functionall

    Plasma ACE2 predicts outcome of COVID-19 in hospitalized patients

    Get PDF
    AimsSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin converting enzyme 2 (ACE2) enabling entrance of the virus into cells and causing the infection termed coronavirus disease of 2019 (COVID-19). Here, we investigate associations between plasma ACE2 and outcome of COVID-19.Methods and resultsThis analysis used data from a large longitudinal study of 306 COVID-19 positive patients and 78 COVID-19 negative patients (MGH Emergency Department COVID-19 Cohort). Comprehensive clinical data were collected on this cohort, including 28-day outcomes. The samples were run on the Olink® Explore 1536 platform which includes measurement of the ACE2 protein. High admission plasma ACE2 in COVID-19 patients was associated with increased maximal illness severity within 28 days with OR = 1.8, 95%-CI: 1.4-2.3 (P ConclusionThis study suggests that measuring plasma ACE2 is potentially valuable in predicting COVID-19 outcomes. Further, ACE2 could be a link between COVID-19 illness severity and its established risk factors hypertension, pre-existing heart disease and pre-existing kidney disease

    The Invasion and Metastasis Promotion Role of CD97 Small Isoform in Gastric Carcinoma

    Get PDF
    CD97 is over-expressed in the majority of gastric adenocarcinomas and is associated with its dedifferentiation and aggressiveness. Our previous results demonstrated that out of three CD97 isoforms tested, only the small one was able to promote increased invasiveness in vitro. Based on these data we further aimed to investigate the role of CD97 small isoform in gastric cancer progression in vivo by employing the cells with a stable CD97 small isoform knock-down and an orthotopic gastric cancer mouse model. We could demonstrate that the knock down of CD97/EGF1,2,5, led to a significant decrease in the number of cells penetrating the gelatin coated membrane as compared with control cells. In the gastric cancer mouse model, both the hypodermic and the orthotopic yielded tumor masses of the CD97/EGF1,2,5kd group and were significantly smaller than the control. Metastatic tumor cell number in early metastatic regional lymph nodes on post-operative day 42 was distinctly decreased in the CD97/EGF1,2,5kd group as compared with the SGC-NS group, and was accompanied with the downregulation of CD44, VEGFR, CD31 and CD97. We concluded in this study that CD97 small isoform not only supported gastric cancer local growth, but also promoted metastatic spread in orthotopically implanted mouse model suggesting involvement of the CD97 small isoform in the preparation of (pre)metastatic niche

    Mechanistic framework to link root growth models with weather and soil physical properties, including example applications to soybean growth in Brazil

    Get PDF
    Background and aimsRoot elongation is generally limited by a combination of mechanical impedance and water stress in most arable soils. However, dynamic changes of soil penetration resistance with soil water content are rarely included in models for predicting root growth. Better modelling frameworks are needed to understand root growth interactions between plant genotype, soil management, and climate. Aim of paper is to describe a new model of root elongation in relation to soil physical characteristics like penetration resistance, matric potential, and hypoxia.MethodsA new diagrammatic framework is proposed to illustrate the interaction between root elongation, soil management, and climatic conditions. The new model was written in Matlab®, using the root architecture model RootBox and a model that solves the 1D Richards equations for water flux in soil. Inputs: root architectural parameters for Soybean; soil hydraulic properties; root water uptake function in relation to matric flux potential; root elongation rate as a function of soil physical characteristics. Simulation scenarios: (a) compact soil layer at 16 to 20 cm; (b) test against a field experiment in Brazil during contrasting drought and normal rainfall seasons.Results(a) Soil compaction substantially slowed root growth into and below the compact layer. (b) Simulated root length density was very similar to field measurements, which was influenced greatly by drought. The main factor slowing root elongation in the simulations was evaluated using a stress reduction function.ConclusionThe proposed framework offers a way to explore the interaction between soil physical properties, weather and root growth. It may be applied to most root elongation models, and offers the potential to evaluate likely factors limiting root growth in different soils and tillage regimes

    Spatial dependency of action simulation

    Get PDF
    In this study, we investigated the spatial dependency of action simulation. From previous research in the field of single-cell recordings, grasping studies and from crossmodal extinction tasks, it is known that our surrounding space can be divided into a peripersonal space and extrapersonal space. These two spaces are functionally different at both the behavioral and neuronal level. The peripersonal space can be seen as an action space which is limited to the area in which we can grasp objects without moving the object or ourselves. The extrapersonal space is the space beyond the peripersonal space. Objects situated within peripersonal space are mapped onto an egocentric reference frame. This mapping is thought to be accomplished by action simulation. To provide direct evidence of the embodied nature of this simulated motor act, we performed two experiments, in which we used two mental rotation tasks, one with stimuli of hands and one with stimuli of graspable objects. Stimuli were presented in both peri- and extrapersonal space. The results showed increased reaction times for biomechanically difficult to adopt postures compared to more easy to adopt postures for both hand and graspable object stimuli. Importantly, this difference was only present for stimuli presented in peripersonal space but not for the stimuli presented in extrapersonal space. These results extend previous behavioral findings on the functional distinction between peripersonal- and extrapersonal space by providing direct evidence for the spatial dependency of the use of action simulation. Furthermore, these results strengthen the hypothesis that objects situated within the peripersonal space are mapped onto an egocentric reference frame by action simulation

    Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment : a review

    Get PDF
    Quantitative image analysis techniques have gained an undeniable role in several fields of research during the last decade. In the field of biological wastewater treatment (WWT) processes, several computer applications have been developed for monitoring microbial entities, either as individual cells or in different types of aggregates. New descriptors have been defined that are more reliable, objective, and useful than the subjective and time-consuming parameters classically used to monitor biological WWT processes. Examples of this application include the objective prediction of filamentous bulking, known to be one of the most problematic phenomena occurring in activated sludge technology. It also demonstrated its usefulness in classifying protozoa and metazoa populations. In high-rate anaerobic processes, based on granular sludge, aggregation times and fragmentation phenomena could be detected during critical events, e.g., toxic and organic overloads. Currently, the major efforts and needs are in the development of quantitative image analysis techniques focusing on its application coupled with stained samples, either by classical or fluorescent-based techniques. The use of quantitative morphological parameters in process control and online applications is also being investigated. This work reviews the major advances of quantitative image analysis applied to biological WWT processes.The authors acknowledge the financial support to the project PTDC/EBB-EBI/103147/2008 and the grant SFRH/BPD/48962/2008 provided by Fundacao para a Ciencia e Tecnologia (Portugal)
    corecore