378 research outputs found

    Influence of eye movement on lens dose and optic nerve target coverage during craniospinal irradiation

    Get PDF
    PURPOSE: Optic nerves are part of the craniospinal irradiation (CSI) target volume. Modern radiotherapy techniques achieve highly conformal target doses while avoiding organs-at-risk such as the lens. The magnitude of eye movement and its influence on CSI target- and avoidance volumes are unclear. We aimed to evaluate the movement-range of lenses and optic nerves and its influence on dose distribution of several planning techniques. METHODS: Ten volunteers underwent MRI scans in various gaze directions (neutral, left, right, cranial, caudal). Lenses, orbital optic nerves, optic discs and CSI target volumes were delineated. 36-Gy cranial irradiation plans were constructed on synthetic CT images in neutral gaze, with Volumetric Modulated Arc Therapy, pencil-beam scanning proton therapy, and 3D-conventional photons. Movement-amplitudes of lenses and optic discs were analyzed, and influence of gaze direction on lens and orbital optic nerve dose distribution. RESULTS: Mean eye structures’ shift from neutral position was greatest in caudal gaze; −5.8±1.2 mm (±SD) for lenses and 7.0±2.0 mm for optic discs. In 3D-conventional plans, caudal gaze decreased Mean Lens Dose (MLD). In VMAT and proton plans, eye movements mainly increased MLD and diminished D98 orbital optic nerve (D98(OON)) coverage; mean MLD increased up to 5.5 Gy [total ΔMLD range −8.1 to 10.0 Gy], and mean D98(OON) decreased up to 3.3 Gy [total ΔD98(OON) range −13.6 to 1.2 Gy]. VMAT plans optimized for optic disc Internal Target Volume and lens Planning organ-at-Risk Volume resulted in higher MLD over gaze directions. D98(OON) became ≥95% of prescribed dose over 95/100 evaluated gaze directions, while all-gaze bilateral D98(OON) significantly changed in 1 of 10 volunteers. CONCLUSION: With modern CSI techniques, eye movements result in higher lens doses and a mean detriment for orbital optic nerve dose coverage of <10% of prescribed dose

    Preoperative image-guided identification of response to neoadjuvant chemoradiotherapy in esophageal cancer (PRIDE):a multicenter observational study

    Get PDF
    BACKGROUND: Nearly one third of patients undergoing neoadjuvant chemoradiotherapy (nCRT) for locally advanced esophageal cancer have a pathologic complete response (pCR) of the primary tumor upon histopathological evaluation of the resection specimen. The primary aim of this study is to develop a model that predicts the probability of pCR to nCRT in esophageal cancer, based on diffusion-weighted magnetic resonance imaging (DW-MRI), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and (18)F-fluorodeoxyglucose positron emission tomography with computed tomography ((18)F-FDG PET-CT). Accurate response prediction could lead to a patient-tailored approach with omission of surgery in the future in case of predicted pCR or additional neoadjuvant treatment in case of non-pCR. METHODS: The PRIDE study is a prospective, single arm, observational multicenter study designed to develop a multimodal prediction model for histopathological response to nCRT for esophageal cancer. A total of 200 patients with locally advanced esophageal cancer - of which at least 130 patients with adenocarcinoma and at least 61 patients with squamous cell carcinoma - scheduled to receive nCRT followed by esophagectomy will be included. The primary modalities to be incorporated in the prediction model are quantitative parameters derived from MRI and (18)F-FDG PET-CT scans, which will be acquired at fixed intervals before, during and after nCRT. Secondary modalities include blood samples for analysis of the presence of circulating tumor DNA (ctDNA) at 3 time-points (before, during and after nCRT), and an endoscopy with (random) bite-on-bite biopsies of the primary tumor site and other suspected lesions in the esophagus as well as an endoscopic ultrasonography (EUS) with fine needle aspiration of suspected lymph nodes after finishing nCRT. The main study endpoint is the performance of the model for pCR prediction. Secondary endpoints include progression-free and overall survival. DISCUSSION: If the multimodal PRIDE concept provides high predictive performance for pCR, the results of this study will play an important role in accurate identification of esophageal cancer patients with a pCR to nCRT. These patients might benefit from a patient-tailored approach with omission of surgery in the future. Vice versa, patients with non-pCR might benefit from additional neoadjuvant treatment, or ineffective therapy could be stopped. TRIAL REGISTRATION: The article reports on a health care intervention on human participants and was prospectively registered on March 22, 2018 under ClinicalTrials.gov Identifier: NCT03474341

    Uterine bathing with sonography gel prior to IVF/ICSI-treatment in patients with endometriosis, a multicentre randomised controlled trial

    Get PDF
    STUDY QUESTION What is the effect of uterine bathing with sonography gel prior to IVF/ICSI-treatment on live birth rates after fresh embryo transfer in patients with endometriosis? SUMMARY ANSWER After formal interim analysis and premature ending of the trial, no significant difference between uterine bathing using a pharmacologically neutral sonography gel compared to a sham procedure on live birth rate after fresh embryo transfer in endometriosis patients (26.7% vs. 15.4%, relative risk (RR) 1.73, 95% confidence interval (CI) 0.81–3.72; P-value 0.147) could be found, although the trial was underpowered to draw definite conclusions. WHAT IS KNOWN ALREADY Impaired implantation receptivity contributes to reduced clinical pregnancy rates after IVF/ICSI-treatment in endometriosis patients. Previous studies have suggested a favourable effect of tubal flushing with Lipiodol® on natural conceptions. This benefit might also be explained by enhancing implantation through endometrial immunomodulation. Although recent studies showed no beneficial effect of endometrial scratching, the effect of mechanical stress by intrauterine infusion on the endometrium in endometriosis patients undergoing IVF/ICSI-treatment has not been investigated yet. STUDY DESIGN, SIZE, DURATION We performed a multicentre, patient-blinded, randomised controlled trial in which women were randomly allocated to either a Gel Infusion Sonography (GIS, intervention group) or a sham procedure (control group) prior to IVF/ICSI-treatment. Since recruitment was slow and completion of the study was considered unfeasible, the study was halted after inclusion of 112 of the planned 184 women. PARTICIPANTS/MATERIALS, SETTING, METHODS We included infertile women with surgically confirmed endometriosis ASRM stage I–IV undergoing IVF/ICSI-treatment. After informed consent, women were randomised to GIS with intrauterine instillation of ExEm-gel® or sonography with gel into the vagina (sham). This was performed in the cycle preceding the embryo transfer, on the day GnRH analogue treatment was started. The primary endpoint was live birth rate after fresh embryo transfer. Analysis was performed by both intention-to-treat and per-protocol. MAIN RESULTS AND THE ROLE OF CHANCE Between July 2014 to September 2018, we randomly allocated 112 women to GIS (n = 60) or sham procedure (n = 52). The live birth rate after fresh embryo transfer was 16/60 (26.7%) after GIS versus 8/52 (15.4%) after the sham (RR 1.73, 95% CI 0.81–3.72; P-value 0.147). Ongoing pregnancy rate was 16/60 (26.7%) after GIS versus 9/52 (17.3%) in the controls (RR 1.54, 95% CI 0.74–3.18). Miscarriage occurred in 1/60 (1.7%) after GIS versus 5/52 (9.6%) in the controls (RR 0.17, 95% CI 0.02–1.44) women. Uterine bathing resulted in a higher pain score compared with a sham procedure (visual analogue scale score 2.7 [1.3–3.5] vs. 1.0 [0.0–2.0], P < 0.001). There were two adverse events after GIS compared with none after sham procedures. LIMITATIONS, REASONS FOR CAUTION The study was terminated prematurely due to slow recruitment and trial fatigue. Therefore, the trial is underpowered to draw definite conclusions regarding the effect of uterine bathing with sonography gel on live birth rate after fresh embryo transfer in endometriosis patients undergoing IVF/ICSI-treatment. WIDER IMPLICATIONS OF THE FINDINGS We could not demonstrate a favourable effect of uterine bathing procedures with sonography gel prior to IVF/ICSI-treatment in patients with endometriosis. STUDY FUNDING/COMPETING INTEREST(S) Investigator initiated study. IQ Medical Ventures provided the ExEm FOAM® kits free of charge, they were not involved in the study design, data management, statistical analyses and/or manuscript preparation, etc. C.B.L. reports receiving grants from Ferring, Merck and Guerbet, outside the submitted work. C.B.L. is Editor-in-Chief of Human Reproduction. V.M. reports grants and other from Guerbet, outside the submitted work. B.W.M. reports grants from NHMRC (GNT1176437), personal fees from ObsEva, Merck and Merck KGaA, Guerbet and iGenomix, outside the submitted work. N.P.J. reports research funding from Abb-Vie and Myovant Sciences and consultancy for Vifor Pharma, Guerbet, Myovant Sciences and Roche Diagnostics, outside the submitted work. K.D. reports personal fees from Guerbet, outside the submitted work. The other authors do not report any conflicts of interest. No financial support was provided. TRIAL REGISTRATION NUMBER NL4025 (NTR4198) TRIAL REGISTRATION DATE 7 October 2013 DATE OF FIRST PATIENT’S ENROLMENT 22 July 201

    Confronting the Challenge of Modeling Cloud and Precipitation Microphysics

    Get PDF
    In the atmosphere, microphysics refers to the microscale processes that affect cloud and precipitation particles and is a key linkage among the various components of Earth\u27s atmospheric water and energy cycles. The representation of microphysical processes in models continues to pose a major challenge leading to uncertainty in numerical weather forecasts and climate simulations. In this paper, the problem of treating microphysics in models is divided into two parts: (i) how to represent the population of cloud and precipitation particles, given the impossibility of simulating all particles individually within a cloud, and (ii) uncertainties in the microphysical process rates owing to fundamental gaps in knowledge of cloud physics. The recently developed Lagrangian particle‐based method is advocated as a way to address several conceptual and practical challenges of representing particle populations using traditional bulk and bin microphysics parameterization schemes. For addressing critical gaps in cloud physics knowledge, sustained investment for observational advances from laboratory experiments, new probe development, and next‐generation instruments in space is needed. Greater emphasis on laboratory work, which has apparently declined over the past several decades relative to other areas of cloud physics research, is argued to be an essential ingredient for improving process‐level understanding. More systematic use of natural cloud and precipitation observations to constrain microphysics schemes is also advocated. Because it is generally difficult to quantify individual microphysical process rates from these observations directly, this presents an inverse problem that can be viewed from the standpoint of Bayesian statistics. Following this idea, a probabilistic framework is proposed that combines elements from statistical and physical modeling. Besides providing rigorous constraint of schemes, there is an added benefit of quantifying uncertainty systematically. Finally, a broader hierarchical approach is proposed to accelerate improvements in microphysics schemes, leveraging the advances described in this paper related to process modeling (using Lagrangian particle‐based schemes), laboratory experimentation, cloud and precipitation observations, and statistical methods

    Nanomechanical Properties and Phase Transitions in a Double-Walled (5,5)@(10,10) Carbon Nanotube: ab initio Calculations

    Full text link
    The structure and elastic properties of (5,5) and (10,10) nanotubes, as well as barriers for relative rotation of the walls and their relative sliding along the axis in a double-walled (5,5)@(10,10) carbon nanotube, are calculated using the density functional method. The results of these calculations are the basis for estimating the following physical quantities: shear strengths and diffusion coefficients for relative sliding along the axis and rotation of the walls, as well as frequencies of relative rotational and translational oscillations of the walls. The commensurability-incommensurability phase transition is analyzed. The length of the incommensurability defect is estimated on the basis of ab initio calculations. It is proposed that (5,5)@(10,10) double-walled carbon nanotube be used as a plain bearing. The possibility of experimental verification of the results is discussed.Comment: 14 page

    Mechanisms for Tuning Engineered Nanomaterials to Enhance Radiation Therapy of Cancer.

    Get PDF
    Engineered nanomaterials that produce reactive oxygen species on exposure to X- and gamma-rays used in radiation therapy offer promise of novel cancer treatment strategies. Similar to photodynamic therapy but suitable for large and deep tumors, this new approach where nanomaterials acting as sensitizing agents are combined with clinical radiation can be effective at well-tolerated low radiation doses. Suitably engineered nanomaterials can enhance cancer radiotherapy by increasing the tumor selectivity and decreasing side effects. Additionally, the nanomaterial platform offers therapeutically valuable functionalities, including molecular targeting, drug/gene delivery, and adaptive responses to trigger drug release. The potential of such nanomaterials to be combined with radiotherapy is widely recognized. In order for further breakthroughs to be made, and to facilitate clinical translation, the applicable principles and fundamentals should be articulated. This review focuses on mechanisms underpinning rational nanomaterial design to enhance radiation therapy, the understanding of which will enable novel ways to optimize its therapeutic efficacy. A roadmap for designing nanomaterials with optimized anticancer performance is also shown and the potential clinical significance and future translation are discussed

    Unresolved issues and new challenges in teaching English to young learners:the case of South Korea

    Get PDF
    The introduction of languages, especially English, into the primary curriculum around the world has been one of the major language-in-education policy developments in recent years. In countries where English has been compulsory for a number of years, the question arises as to what extent the numerous and well-documented challenges faced by the initial implementation of early language learning policies have been overcome and whether new challenges have arisen as policies have become consolidated. This article therefore focuses on South Korea, where English has been compulsory in primary school since 1997. The issues raised by the introduction of English into the primary curriculum are reviewed and the current situation in South Korea is investigated. The results of a mixed methods study using survey data from 125 Korean primary school teachers, together with data from a small-scale case study of one teacher are presented. The study shows that, while some of the initial problems caused by the introduction of early language learning appear to have been addressed, other challenges persist. Moreover, the data reveal the emergence of a number of new challenges faced by primary school teachers of English as they seek to implement government policy

    Driving pressure during general anesthesia for open abdominal surgery (DESIGNATION) : study protocol of a randomized clinical trial

    Get PDF
    Background Intraoperative driving pressure (Delta P) is associated with development of postoperative pulmonary complications (PPC). When tidal volume (V-T) is kept constant, Delta P may change according to positive end-expiratory pressure (PEEP)-induced changes in lung aeration. Delta P may decrease if PEEP leads to a recruitment of collapsed lung tissue but will increase if PEEP mainly causes pulmonary overdistension. This study tests the hypothesis that individualized high PEEP, when compared to fixed low PEEP, protects against PPC in patients undergoing open abdominal surgery. Methods The "Driving prESsure durIng GeNeral AnesThesIa for Open abdomiNal surgery trial" (DESIGNATION) is an international, multicenter, two-group, double-blind randomized clinical superiority trial. A total of 1468 patients will be randomly assigned to one of the two intraoperative ventilation strategies. Investigators screen patients aged >= 18 years and with a body mass index <= 40 kg/m(2), scheduled for open abdominal surgery and at risk for PPC. Patients either receive an intraoperative ventilation strategy with individualized high PEEP with recruitment maneuvers (RM) ("individualized high PEEP") or one in which PEEP of 5 cm H2O without RM is used ("low PEEP"). In the "individualized high PEEP" group, PEEP is set at the level at which Delta P is lowest. In both groups of the trial, V-T is kept at 8 mL/kg predicted body weight. The primary endpoint is the occurrence of PPC, recorded as a collapsed composite of adverse pulmonary events. Discussion DESIGNATION will be the first randomized clinical trial that is adequately powered to compare the effects of individualized high PEEP with RM versus fixed low PEEP without RM on the occurrence of PPC after open abdominal surgery. The results of DESIGNATION will support anesthesiologists in their decisions regarding PEEP settings during open abdominal surgery
    corecore