24 research outputs found

    An on-line post-column detection system for the detection of reactive-oxygen-species-producing compounds and antioxidants in mixtures

    Get PDF
    Reactive oxygen species (ROS) can damage proteins, cause lipid peroxidation, and react with DNA, ultimately resulting in harmful effects. Antioxidants constitute one of the defense systems used to neutralize pro-oxidants. Since pro-oxidants and antioxidants are found ubiquitously in nature, pro-and antioxidant effects of individual compounds and of mixtures receive much attention in scientific research. A major bottleneck in these studies, however, is the identification of the individual pro-oxidants and antioxidants in mixtures. Here, we describe the development and validation of an on-line post-column biochemical detection system for ROS-producing compounds and antioxidants in mixtures. Inclusion of cytochrome P450s and cytochrome P450 reductase also permitted the screening of compounds that need bioactivation to exert their ROS-producing properties. This pro-oxidant and antioxidant detection system was integrated on-line with gradient HPLC. The resulting high-resolution screening technology was able to separate mixtures of ROS-producing compounds and antioxidants, allowing each species to be characterized rapidly and sensitively

    Arachidyl Amido Cholanoic Acid Improves Liver Glucose and Lipid Homeostasis in Nonalcoholic Steatohepatitis Via AMPK and mTOR Regulation

    Get PDF
    BACKGROUND Arachidyl amido cholanoic acid (Aramchol) is a potent downregulator of hepatic stearoyl-CoA desaturase 1 (SCD1) protein expression that reduces liver triglycerides and fibrosis in animal models of steatohepatitis. In a phase IIb clinical trial in patients with nonalcoholic steatohepatitis (NASH), 52 wk of treatment with Aramchol reduced blood levels of glycated hemoglobin A1c, an indicator of glycemic control. AIM To assess lipid and glucose metabolism in mouse hepatocytes and in a NASH mouse model [induced with a 0.1% methionine and choline deficient diet (0.1MCD)] after treatment with Aramchol. METHODS Isolated primary mouse hepatocytes were incubated with 20 mu mol/L Aramchol or vehicle for 48 h. Subsequently, analyses were performed including Western blot, proteomics by mass spectrometry, and fluxomic analysis with(13)C-uniformly labeled glucose. For thein vivopart of the study, male C57BL/6J mice were randomly fed a control or 0.1MCD for 4 wk and received 1 or 5 mg/kg/d Aramchol or vehicle by intragastric gavage for the last 2 wk. Liver metabolomics were assessed using ultra-high-performance liquid chromatography-time of flight-MS for the determination of glucose metabolism-related metabolites. RESULTS Combination of proteomics and Western blot analyses showed increased AMPK activity while the activity of nutrient sensor mTORC1 was decreased by Aramchol in hepatocytes. This translated into changes in the content of their downstream targets including proteins involved in fatty acid (FA) synthesis and oxidation [P-ACC alpha/beta(S79), SCD1, CPT1A/B, HADHA, and HADHB], oxidative phosphorylation (NDUFA9, NDUFB11, NDUFS1, NDUFV1, ETFDH, and UQCRC2), tricarboxylic acid (TCA) cycle (MDH2, SUCLA2, and SUCLG2), and ribosome (P-p70S6K[T389] and P-S6[S235/S236]). Flux experiments with(13)C-uniformely labeled glucose showed that TCA cycle cataplerosis was reduced by Aramchol in hepatocytes, as indicated by the increase in the number of rounds that malate remained in the TCA cycle. Finally, liver metabolomic analysis showed that glucose homeostasis was improved by Aramchol in 0.1MCD fed mice in a dose-dependent manner, showing normalization of glucose, G6P, F6P, UDP-glucose, and Rbl5P/Xyl5P. CONCLUSION Aramchol exerts its effect on glucose and lipid metabolism in NASH through activation of AMPK and inhibition of mTORC1, which in turn activate FA beta-oxidation and oxidative phosphorylation.Supported by the National Institutes of Health Grant, No. R01CA172086; Plan Nacional of I+D, No. SAF2017-88041-R; Ministerio de Economia y Competitividad de Espana, No. SAF2017-87301-R; Asociacion Espanola contra el Cancer, No. AECC17/302; Ayudas Fundacion BBVA a equipos de Investigacion Cientifica 2018; Fondo Europeo de Desarrollo Regional, Ministerio de Economia y Competitividad de Espana, No. PGC2018-099857-BI00; Basque Government Grants, No. IT1264-19; Ministerio de Economia y Competitividad de Espana for the Severo Ochoa Excellence Accreditation, No. SEV2016-0644. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Borrelia burgdorferi infection induces long-term memory-like responses in macrophages with tissue-wide consequences in the heart

    Get PDF
    Lyme carditis is an extracutaneous manifestation of Lyme disease characterized by episodes of atrioventricular block of varying degrees and additional, less reported cardiomyopathies. The molecular changes associated with the response to Borrelia burgdorferi over the course of infection are poorly understood. Here, we identify broad transcriptomic and proteomic changes in the heart during infection that reveal a profound down-regulation of mitochondrial components. We also describe the long-term functional modulation of macrophages exposed to live bacteria, characterized by an augmented glycolytic output, increased spirochetal binding and internalization, and reduced inflammatory responses. In vitro, glycolysis inhibition reduces the production of tumor necrosis factor (TNF) by memory macrophages, whereas in vivo, it produces the reversion of the memory phenotype, the recovery of tissue mitochondrial components, and decreased inflammation and spirochetal burdens. These results show that B. burgdorferi induces long-term, memory-like responses in macrophages with tissue-wide consequences that are amenable to be manipulated in vivo.Supported by grants from the Spanish Ministry of Science, Innovation and Universities (MCIU) co-financed with FEDER funds (SAF2015-65327-R and RTI2018-096494-B-100 to JA; BFU2016-76872-R to EB, AGL2017-86757-R to LA, SAF2017-87301-R to MLMC, SAF2015-64111-R to AP, SAF2015-73549-JIN to HR), Instituto de Salud Carlos III (PIE13/0004 to AP), the Basque Government Department of Health (2015111117 to LA), the Basque Foundation for Innovation and Health Research (BIOEF), through the EiTB Maratoia grant BIO15/CA/016/BS to MLMC, the regional Government of Andalusia co-funded by CEC and FEDER funds (Proyectos de Excelencia P12-CTS-2232) and Fundación Domingo Martínez (to AP). LA is supported by the Ramon y Cajal program (RYC-2013-13666). DB, MMR and TMM are recipients of MCIU FPI fellowships. ACG and AP are recipients of fellowships form the Basque Government. APC is a recipient of a fellowship from the University of the Basque Country. We thank the MCIU for the Severo Ochoa Excellence accreditation (SEV-2016-0644), the Basque Department of Industry, Tourism and Trade (Etortek and Elkartek programs), the Innovation Technology Department of the Bizkaia Province and the CIBERehd network. DB and JA are supported by a grant from the Jesús de Gangoiti Barrera Foundation

    Hepatic levels of S-adenosylmethionine regulate the adaptive response to fasting

    Get PDF
    26 p.-6 fig.-1 tab.-1 graph. abst.There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)—the principal methyl donor—acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, β-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive β-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.M.V.-R. is supported by Proyecto PID2020-119486RB-100 (funded by MCIN/AEI/10.13039/501100011033), Gilead Sciences International Research Scholars Program in Liver Disease, Acción Estratégica Ciberehd Emergentes 2018 (ISCIII), Fundación BBVA, HORIZON-TMA-MSCA-Doctoral Networks 2021 (101073094), and Redes de Investigación 2022 (RED2022-134485-T). M.L.M.-C. is supported by La CAIXA Foundation (LCF/PR/HP17/52190004), Proyecto PID2020-117116RB-I00 (funded by MCIN/AEI/10.13039/501100011033), Ayudas Fundación BBVA a equipos de investigación científica (Umbrella 2018), and AECC Scientific Foundation (Rare Cancers 2017). A.W. is supported by RTI2018-097503-B-I00 and PID2021-127169OB-I00, (funded by MCIN/AEI/10.13039/501100011033) and by “ERDF A way of making Europe,” Xunta de Galicia (Ayudas PRO-ERC), Fundación Mutua Madrileña, and European Community’s H2020 Framework Programme (ERC Consolidator grant no. 865157 and MSCA Doctoral Networks 2021 no. 101073094). C.M. is supported by CIBERNED. P.A. is supported by Ayudas para apoyar grupos de investigación del sistema Universitario Vasco (IT1476-22), PID2021-124425OB-I00 (funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way of making Europe,” MCI/UE/ISCiii [PMP21/00080], and UPV/EHU [COLAB20/01]). M.F. and M.G.B. are supported by PID2019-105739GB-I00 and PID2020-115472GB-I00, respectively (funded by MCIN/AEI/10.13039/501100011033). M.G.B. is supported by Xunta de Galicia (ED431C 2019/013). C.A., T.L.-D., and J.B.-V. are recipients of pre-doctoral fellowships from Xunta de Galicia (ED481A-2020/046, ED481A-2018/042, and ED481A 2021/244, respectively). T.C.D. is supported by Fundación Científica AECC. A.T.-R. is a recipient of a pre-doctoral fellowship from Fundación Científica AECC. S.V.A. and C.R. are recipients of Margarita Salas postdoc grants under the “Plan de Recuperación Transformación” program funded by the Spanish Ministry of Universities with European Union’s NextGeneration EU funds (2021/PER/00020 and MU-21-UP2021-03071902373A, respectively). T.C.D., A.S.-R., and M.T.-C. are recipients of Ayuda RYC2020-029316-I, PRE2019/088960, and BES-2016/078493, respectively, supported by MCIN/AEI/10.13039/501100011033 and by El FSE invierte en tu futuro. S.L.-O. is a recipient of a pre-doctoral fellowship from the Departamento de Educación del Gobierno Vasco (PRE_2018_1_0372). P.A.-G. is recipient of a FPU pre-doctoral fellowship from the Ministry of Education (FPU19/02704). CIC bioGUNE is supported by Ayuda CEX2021-001136-S financiada por MCIN/AEI/10.13039/501100011033. A.B.-C. was funded by predoctoral contract PFIS (FI19/00240) from Instituto de Salud Carlos III (ISCIII) co-funded by Fondo Social Europeo (FSE), and A.D.-L. was funded by contract Juan Rodés (JR17/00016) from ISCIII. A.B.-C. is a Miguel Servet researcher (CPII22/00008) from ISCIII.Peer reviewe

    Metabolic profiling of endocrine-disrupting compounds by on-line cytochrome p450 bioreaction coupled to on-line receptor affinity screening

    No full text
    We present a fully automated and hyphenated bioanalytical method for metabolic profiling of potentially harmful xenoestrogens. The system consists of an on-line cytochrome P450 bioreactor coupled to a reversed-phase, gradient high-performance liquid chromatograph. A C18 solid-phase extraction (SPE) unit is used as an interface between the P450 bioreactor and the HPLC column. The HPLC column is linked on-line to a high-resolution screening (HRS)-estrogen receptor alpha affinity detection (ERAD) assay. In effect, the P450 bioreactor produces metabolites that are subsequently trapped on-line by SPE and separated by HPLC. The separated metabolites are then screened on-line, at the moment of elution, for affinity toward estrogen receptor alpha (ERalpha) using the HRS-ERAD assay. The SPE method was optimized with methoxychlor (MXC) and its metabolites mono- and bis-OH-MXC. After optimization, the P450-bioreactor-SPE-HPLC system was made generally applicable to the biocatalysis and trapping of polar to highly apolar compounds. The precision of the P450-bioreactor-SPE-HPLC system is high (relative standard deviation<or=15%), and the HRS-ERAD assay is also very sensitive (having lower limits of detection of 250 ng for bis-OH-MXC and 240 ng for mono-OH-MXC). Finally, bioactivation of 2-hydroxy-4-methoxybenzophenone (benzophenone-3) into ERalpha-binding metabolites by P450 was studied using the validated P450-bioreactor-SPE-HPLC-ERAD system in combination with atmospheric pressure chemical ionization MS. This resulted in the detection of three ERalpha-binding metabolites, of which at least one, a hydroxylated metabolite initially detected only by ERalpha affinity, had not been described previously. The hyphenated P450-bioreactor-SPE-HPLC-HRS-ERAD methodology presented here will be of great interest in on-line research of metabolic activation of endocrine-disrupting compounds

    Impaired beta-oxidation increases vulnerability to influenza A infection.

    No full text
    Influenza A virus (IAV) infection casts a significant burden on society. It has particularly high morbidity and mortality rates in patients suffering from metabolic disorders. The aim of this study was to relate metabolic changes with IAV susceptibility using well-characterized inbred mouse models. We compared the highly susceptible DBA/2J (D2) mouse strain for which IAV infection is lethal with the C57BL/6J (B6) strain, which exhibits a moderate course of disease and survives IAV infection. Previous studies showed that D2 has higher insulin and glucose levels and is predisposed to develop diet-induced type 2 diabetes. Using high-resolution liquid chromatography-coupled MS, the plasma metabolomes of individual animals were repeatedly measured up to 30 days postinfection. The biggest metabolic difference between these strains in healthy and infected states was in the levels of malonylcarnitine, which was consistently increased 5-fold in D2. Other interstrain and intrastrain differences in healthy and infected animals were observed for acylcarnitines, glucose, branched-chain amino acids, and oxidized fatty acids. By mapping metabolic changes to canonical pathways, we found that mitochondrial beta-oxidation is likely disturbed in D2 animals. In noninfected D2 mice, this leads to increased glycerolipid production and reduced acylcarnitine production, whereas in infected D2 animals, peroxisomal beta-oxidation becomes strongly increased. From these studies, we conclude that metabolic changes caused by a distortion of mitochondrial and peroxisomal metabolism might impact the innate immune response in D2, leading to high viral titers and mortality

    Structure and function study of the complex that synthesizes S-adenosylmethionine

    No full text
    S-Adenosylmethionine (SAMe) is the principal methyl donor of the cell and is synthesized via an ATP-driven process by methionine adenosyltransferase (MAT) enzymes. It is tightly linked with cell proliferation in liver and colon cancer. In humans, there are three genes, mat1A, mat2A and mat2B, which encode MAT enzymes. mat2A and mat2B transcribe MATα2 and MATβ enzyme subunits, respectively, with catalytic and regulatory roles. The MATα2β complex is expressed in nearly all tissues and is thought to be essential in providing the necessary SAMe flux for methylation of DNA and various proteins including histones. In human hepatocellular carcinoma mat2A and mat2B genes are upregulated, highlighting the importance of the MATα2β complex in liver disease. The individual subunits have been structurally characterized but the nature of the complex has remained elusive despite its existence having been postulated for more than 20 years and the observation that MATβ is often co-localized with MATα2. Though SAMe can be produced by MAT(α2)4 alone, this paper shows that the Vmax of the MATα2β complex is three- to fourfold higher depending on the variants of MATβ that participate in complex formation. Using X-ray crystallography and solution X-ray scattering, the first structures are provided of this 258 kDa functional complex both in crystals and solution with an unexpected stoichiometry of 4α2 and 2βV2 subunits. It is demonstrated that the N-terminal regulates the activity of the complex and it is shown that complex formation takes place surprisingly via the C-terminal of MATβV2 that buries itself in a tunnel created at the interface of the MAT(α2)2. The structural data suggest a unique mechanism of regulation and provide a gateway for structure-based drug design in anticancer therapies

    Development of a novel cytochrome P450 bioaffinity detection system coupled online to gradient reversed-phase high-performance liquid chromatography

    No full text
    A high-resolution screening platform, coupling online affinity detection for mammalian cytochrome P450s (Cyt P450s) to gradient reversed-phase high-performance liquid chromatography (HPLC), is described. To this end, the online Cyt P450 enzyme affinity detection (EAD) system was optimized for enzyme (β-NF-induced rat liver microsomes), probe substrate (ethoxyresorufine), and organic modifier (methanol or acetonitrile). The optimized Cyt P450 EAD system has first been evaluated in a flow injection analysis (FIA) mode with 7 known ligands of Cyt P450 1A1/1A2 (α-naphthoflavone, β- naphthoflavone, ellipticine, 9-hydroxy-ellipticine, fluvoxamine, caffein, and phenacetin). Subsequently, I
    corecore