3,393 research outputs found

    Gaia: Organisation and challenges for the data processing

    Get PDF
    Gaia is an ambitious space astrometry mission of ESA with a main objective to map the sky in astrometry and photometry down to a magnitude 20 by the end of the next decade. While the mission is built and operated by ESA and an industrial consortium, the data processing is entrusted to a consortium formed by the scientific community, which was formed in 2006 and formally selected by ESA one year later. The satellite will downlink around 100 TB of raw telemetry data over a mission duration of 5 years from which a very complex iterative processing will lead to the final science output: astrometry with a final accuracy of a few tens of microarcseconds, epoch photometry in wide and narrow bands, radial velocity and spectra for the stars brighter than 17 mag. We discuss the general principles and main difficulties of this very large data processing and present the organisation of the European Consortium responsible for its design and implementation.Comment: 7 pages, 2 figures, Proceedings of IAU Symp. 24

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc

    Gaia Data Processing Architecture

    Get PDF
    Gaia is ESA's ambitious space astrometry mission the main objective of which is to astrometrically and spectro-photometrically map 1000 Million celestial objects (mostly in our galaxy) with unprecedented accuracy. The announcement of opportunity for the data processing will be issued by ESA late in 2006. The Gaia Data Processing and Analysis Consortium (DPAC) has been formed recently and is preparing an answer. The satellite will downlink close to 100 TB of raw telemetry data over 5 years. To achieve its required accuracy of a few 10s of Microarcsecond astrometry, a highly involved processing of this data is required. In addition to the main astrometric instrument Gaia will host a Radial Velocity instrument, two low-resolution dispersers for multi-color photometry and two Star Mappers. Gaia is a flying Giga Pixel camera. The various instruments each require relatively complex processing while at the same time being interdependent. We describe the overall composition of the DPAC and the envisaged overall architecture of the Gaia data processing system. We shall delve further into the core processing - one of the nine, so-called, coordination units comprising the Gaia processing system.Comment: 10 Pages, 2 figures. To appear in ADASS XVI Proceeding

    Gaia: organisation and challenges for the data processing

    Get PDF
    Gaia is an ambitious space astrometry mission of ESA with a main objective to map the sky in astrometry and photometry down to a magnitude 20 by the end of the next decade. While the mission is built and operated by ESA and an industrial consortium, the data processing is entrusted to a consortium formed by the scientific community, which was formed in 2006 and formally selected by ESA one year later. The satellite will downlink around 100 TB of raw telemetry data over a mission duration of 5 years from which a very complex iterative processing will lead to the final science output: astrometry with a final accuracy of a few tens of microarcseconds, epoch photometry in wide and narrow bands, radial velocity and spectra for the stars brighter than 17 mag. We discuss the general principles and main difficulties of this very large data processing and present the organization of the European Consortium responsible for its design and implementatio

    The Tip of the Red Giant Branch Distance to the Large Magellanic Cloud

    Get PDF
    We present the I-band luminosity function of the red giant branch stars in the Large Magellanic Cloud (LMC) using the data from the Magellanic Clouds Photometric Survey (Zaritsky, Harris & Thompson, 1997). Selecting stars in uncrowded, low-extinction regions, a discontinuity in the luminosity function is observed at I_0 = 14.54 mag. Identifying this feature with the tip of the red giant branch (TRGB), and adopting an absolute TRGB magnitude of -4.05 +- 0.04 mag based on the calibration of Lee, Freedman & Madore (1993), we obtain a distance modulus of 18.59 +- 0.09 (random) +- 0.16 (systematic) mag. If the theoretical TRGB calibration provided by Cassisi & Salaris (1997) is adopted instead, the derived distance would be 4% greater. The LMC distance modulus reported here, 18.59 +- 0.09, is larger by 0.09 mag (1-sigma) than the value that is most commonly used in the extragalactic distance scale calibrated by the period-luminosity relation of the Cepheid variable stars. Our TRGB distance modulus agrees with several RR Lyrae distances to the LMC based on HIPPARCOS parallaxes. Finally, we note that using the same MCPS data, we obtain a distance modulus of 18.29 +- 0.03 mag using the red clump method, which is shorter by 0.3 mag compared to the TRGB estimate.Comment: 19 pages, 5 figure

    Local exchange-correlation vector potential with memory in Time-Dependent Density Functional Theory: the generalized hydrodynamics approach

    Full text link
    Using Landau Fermi liquid theory we derive a nonlinear non-adiabatic approximation for the exchange-correlation (xc) vector potential defined by the xc stress tensor. The stress tensor is a local nonlinear functional of two basic variables - the displacement vector and the second-rank tensor which describes the evolution of momentum in a local frame moving with Eulerian velocity. For irrotational motion and equilibrium initial state the dependence on the tensor variable reduces to that on a metrics generated by a dynamical deformation of the system.Comment: RevTex, 5 pages, no figures. Final version published in PR

    Exchange and Correlation Kernels at the Resonance Frequency -- Implications for Excitation Energies in Density-Functional Theory

    Full text link
    Specific matrix elements of exchange and correlation kernels in time-dependent density-functional theory are computed. The knowledge of these matrix elements not only constraints approximate time-dependent functionals, but also allows to link different practical approaches to excited states, either based on density-functional theory, or on many-body perturbation theory, despite the approximations that have been performed to derive them.Comment: Submitted to Phys. Rev. Lett. (February 4, 1999). Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Wide binaries as a critical test of Classical Gravity

    Full text link
    Modified gravity scenarios where a change of regime appears at acceleration scales a<a0a<a_{0} have been proposed. Since for 1M1 M_{\odot} systems the acceleration drops below a0a_{0} at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching 10410^{4} AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same a<a0a<a_{0} acceleration regime. Our results are suggestive of a breakdown of Kepler's third law beyond aa0a \approx a_{0} scales, in accordance with generic predictions of modified gravity theories designed not to require any dark matter at galactic scales and beyond.Comment: accepted for publication in EPJ

    Discovery and Follow-up of Rotating Radio Transients with the Green Bank and LOFAR Telescopes

    Get PDF
    We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {\tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm3^{-3}, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr1^{-1} at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. P>200P>200 ms) are preferentially more likely to emit bright single pulses than are faster pulsars (P<200P<200 ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.Comment: 18 pages, 13 figures, 5 tables, published in Ap

    XHIP-II: Clusters and associations

    Full text link
    Context. In the absence of complete kinematic data it has not previously been possible to furnish accurate lists of member stars for all moving groups. There has been an unresolved dispute concerning the apparent inconsistency of the Hipparcos parallax distance to the Pleiades. Aims. To find improved candidate lists for clusters and associations represented among Hipparcos stars, to establish distances, and to cast light on the Pleiades distance anomaly. Methods. We use a six dimensional fitting procedure to identify candidates, and plot CMDs for 20 of the nearest groups. We calculate the mean parallax distance for all groups. Results. We identify lists of candidates and calculated parallax distances for 42 clusters and 45 associations represented within the Hipparcos catalogue. We find agreement between parallax distance and photometric distances for the most important clusters. For single stars in the Pleiades we find mean parallax distance 125.6 \pm 4.2 pc and photometric distance 132 \pm 3 pc calibrated to nearby groups of similar in age and composition. This gives no reason to doubt either the Hipparcos database or stellar evolutionary theory.Comment: Accepted for publication in Astronomy Letters, 10 pages, 2 fig
    corecore